{--- Monoidal formulation of monads ---} {-# OPTIONS --cubical #-} open import Agda.Primitive open import Cat.Prelude open import Cat.Category open import Cat.Category.Functor as F open import Cat.Categories.Fun module Cat.Category.Monad.Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where -- "A monad in the monoidal form" [voe] private ℓ = ℓa ⊔ ℓb open Category ℂ using (Object ; Arrow ; identity ; _<<<_) open import Cat.Category.NaturalTransformation ℂ ℂ using (NaturalTransformation ; Transformation ; Natural) record RawMonad : Set ℓ where field R : EndoFunctor ℂ pureNT : NaturalTransformation Functors.identity R joinNT : NaturalTransformation F[ R ∘ R ] R Romap = Functor.omap R fmap = Functor.fmap R -- Note that `pureT` and `joinT` differs from their definition in the -- kleisli formulation only by having an explicit parameter. pureT : Transformation Functors.identity R pureT = fst pureNT pure : {X : Object} → ℂ [ X , Romap X ] pure = pureT _ pureN : Natural Functors.identity R pureT pureN = snd pureNT joinT : Transformation F[ R ∘ R ] R joinT = fst joinNT join : {X : Object} → ℂ [ Romap (Romap X) , Romap X ] join = joinT _ joinN : Natural F[ R ∘ R ] R joinT joinN = snd joinNT bind : {X Y : Object} → ℂ [ X , Romap Y ] → ℂ [ Romap X , Romap Y ] bind {X} {Y} f = join <<< fmap f IsAssociative : Set _ IsAssociative = {X : Object} -- R and join commute → joinT X <<< fmap join ≡ join <<< join IsInverse : Set _ IsInverse = {X : Object} -- Talks about R's action on objects → join <<< pure ≡ identity {Romap X} -- Talks about R's action on arrows × join <<< fmap pure ≡ identity {Romap X} IsNatural = ∀ {X Y} (f : Arrow X (Romap Y)) → join <<< fmap f <<< pure ≡ f IsDistributive = ∀ {X Y Z} (g : Arrow Y (Romap Z)) (f : Arrow X (Romap Y)) → join <<< fmap g <<< (join <<< fmap f) ≡ join <<< fmap (join <<< fmap g <<< f) record IsMonad (raw : RawMonad) : Set ℓ where open RawMonad raw public field isAssociative : IsAssociative isInverse : IsInverse private module R = Functor R module ℂ = Category ℂ isNatural : IsNatural isNatural {X} {Y} f = begin joinT Y <<< R.fmap f <<< pureT X ≡⟨ sym ℂ.isAssociative ⟩ joinT Y <<< (R.fmap f <<< pureT X) ≡⟨ cong (λ φ → joinT Y <<< φ) (sym (pureN f)) ⟩ joinT Y <<< (pureT (R.omap Y) <<< f) ≡⟨ ℂ.isAssociative ⟩ joinT Y <<< pureT (R.omap Y) <<< f ≡⟨ cong (λ φ → φ <<< f) (fst isInverse) ⟩ identity <<< f ≡⟨ ℂ.leftIdentity ⟩ f ∎ isDistributive : IsDistributive isDistributive {X} {Y} {Z} g f = sym aux where module R² = Functor F[ R ∘ R ] distrib3 : ∀ {A B C D} {a : Arrow C D} {b : Arrow B C} {c : Arrow A B} → R.fmap (a <<< b <<< c) ≡ R.fmap a <<< R.fmap b <<< R.fmap c distrib3 {a = a} {b} {c} = begin R.fmap (a <<< b <<< c) ≡⟨ R.isDistributive ⟩ R.fmap (a <<< b) <<< R.fmap c ≡⟨ cong (_<<< _) R.isDistributive ⟩ R.fmap a <<< R.fmap b <<< R.fmap c ∎ aux = begin joinT Z <<< R.fmap (joinT Z <<< R.fmap g <<< f) ≡⟨ cong (λ φ → joinT Z <<< φ) distrib3 ⟩ joinT Z <<< (R.fmap (joinT Z) <<< R.fmap (R.fmap g) <<< R.fmap f) ≡⟨⟩ joinT Z <<< (R.fmap (joinT Z) <<< R².fmap g <<< R.fmap f) ≡⟨ cong (_<<<_ (joinT Z)) (sym ℂ.isAssociative) ⟩ joinT Z <<< (R.fmap (joinT Z) <<< (R².fmap g <<< R.fmap f)) ≡⟨ ℂ.isAssociative ⟩ (joinT Z <<< R.fmap (joinT Z)) <<< (R².fmap g <<< R.fmap f) ≡⟨ cong (λ φ → φ <<< (R².fmap g <<< R.fmap f)) isAssociative ⟩ (joinT Z <<< joinT (R.omap Z)) <<< (R².fmap g <<< R.fmap f) ≡⟨ ℂ.isAssociative ⟩ joinT Z <<< joinT (R.omap Z) <<< R².fmap g <<< R.fmap f ≡⟨⟩ ((joinT Z <<< joinT (R.omap Z)) <<< R².fmap g) <<< R.fmap f ≡⟨ cong (_<<< R.fmap f) (sym ℂ.isAssociative) ⟩ (joinT Z <<< (joinT (R.omap Z) <<< R².fmap g)) <<< R.fmap f ≡⟨ cong (λ φ → φ <<< R.fmap f) (cong (_<<<_ (joinT Z)) (joinN g)) ⟩ (joinT Z <<< (R.fmap g <<< joinT Y)) <<< R.fmap f ≡⟨ cong (_<<< R.fmap f) ℂ.isAssociative ⟩ joinT Z <<< R.fmap g <<< joinT Y <<< R.fmap f ≡⟨ sym (Category.isAssociative ℂ) ⟩ joinT Z <<< R.fmap g <<< (joinT Y <<< R.fmap f) ∎ record Monad : Set ℓ where field raw : RawMonad isMonad : IsMonad raw open IsMonad isMonad public private module _ {m : RawMonad} where open RawMonad m propIsAssociative : isProp IsAssociative propIsAssociative x y i {X} = Category.arrowsAreSets ℂ _ _ (x {X}) (y {X}) i propIsInverse : isProp IsInverse propIsInverse x y i {X} = e1 i , e2 i where xX = x {X} yX = y {X} e1 = Category.arrowsAreSets ℂ _ _ (fst xX) (fst yX) e2 = Category.arrowsAreSets ℂ _ _ (snd xX) (snd yX) open IsMonad propIsMonad : (raw : _) → isProp (IsMonad raw) IsMonad.isAssociative (propIsMonad raw a b i) j = propIsAssociative {raw} (isAssociative a) (isAssociative b) i j IsMonad.isInverse (propIsMonad raw a b i) = propIsInverse {raw} (isInverse a) (isInverse b) i module _ {m n : Monad} (eq : Monad.raw m ≡ Monad.raw n) where private eqIsMonad : (λ i → IsMonad (eq i)) [ Monad.isMonad m ≡ Monad.isMonad n ] eqIsMonad = lemPropF propIsMonad eq Monad≡ : m ≡ n Monad.raw (Monad≡ i) = eq i Monad.isMonad (Monad≡ i) = eqIsMonad i