{-# OPTIONS --cubical #-} module Cat.Category where open import Agda.Primitive open import Data.Unit.Base open import Data.Product renaming (proj₁ to fst ; proj₂ to snd) open import Data.Empty open import Function open import Cubical postulate undefined : {ℓ : Level} → {A : Set ℓ} → A record Category {ℓ ℓ'} : Set (lsuc (ℓ' ⊔ ℓ)) where constructor category field Object : Set ℓ Arrow : Object → Object → Set ℓ' 𝟙 : {o : Object} → Arrow o o _⊕_ : { a b c : Object } → Arrow b c → Arrow a b → Arrow a c assoc : { A B C D : Object } { f : Arrow A B } { g : Arrow B C } { h : Arrow C D } → h ⊕ (g ⊕ f) ≡ (h ⊕ g) ⊕ f ident : { A B : Object } { f : Arrow A B } → f ⊕ 𝟙 ≡ f × 𝟙 ⊕ f ≡ f infixl 45 _⊕_ domain : { a b : Object } → Arrow a b → Object domain {a = a} _ = a codomain : { a b : Object } → Arrow a b → Object codomain {b = b} _ = b open Category public module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} { A B : Object ℂ } where private open module ℂ = Category ℂ _+_ = ℂ._⊕_ Isomorphism : (f : ℂ.Arrow A B) → Set ℓ' Isomorphism f = Σ[ g ∈ ℂ.Arrow B A ] g + f ≡ ℂ.𝟙 × f + g ≡ ℂ.𝟙 Epimorphism : {X : ℂ.Object } → (f : ℂ.Arrow A B) → Set ℓ' Epimorphism {X} f = ( g₀ g₁ : ℂ.Arrow B X ) → g₀ + f ≡ g₁ + f → g₀ ≡ g₁ Monomorphism : {X : ℂ.Object} → (f : ℂ.Arrow A B) → Set ℓ' Monomorphism {X} f = ( g₀ g₁ : ℂ.Arrow X A ) → f + g₀ ≡ f + g₁ → g₀ ≡ g₁ iso-is-epi : ∀ {X} (f : ℂ.Arrow A B) → Isomorphism f → Epimorphism {X = X} f -- Idea: Pre-compose with f- on both sides of the equality of eq to get -- g₀ + f + f- ≡ g₁ + f + f- -- which by left-inv reduces to the goal. iso-is-epi f (f- , left-inv , right-inv) g₀ g₁ eq = trans (sym (fst ℂ.ident)) ( trans (cong (_+_ g₀) (sym right-inv)) ( trans ℂ.assoc ( trans (cong (λ x → x + f-) eq) ( trans (sym ℂ.assoc) ( trans (cong (_+_ g₁) right-inv) (fst ℂ.ident)) ) ) ) ) iso-is-mono : ∀ {X} (f : ℂ.Arrow A B ) → Isomorphism f → Monomorphism {X = X} f -- For the next goal we do something similar: Post-compose with f- and use -- right-inv to get the goal. iso-is-mono f (f- , (left-inv , right-inv)) g₀ g₁ eq = trans (sym (snd ℂ.ident)) ( trans (cong (λ x → x + g₀) (sym left-inv)) ( trans (sym ℂ.assoc) ( trans (cong (_+_ f-) eq) ( trans ℂ.assoc ( trans (cong (λ x → x + g₁) left-inv) (snd ℂ.ident) ) ) ) ) ) iso-is-epi-mono : ∀ {X} (f : ℂ.Arrow A B ) → Isomorphism f → Epimorphism {X = X} f × Monomorphism {X = X} f iso-is-epi-mono f iso = iso-is-epi f iso , iso-is-mono f iso {- epi-mono-is-not-iso : ∀ {ℓ ℓ'} → ¬ ((ℂ : Category {ℓ} {ℓ'}) {A B X : Object ℂ} (f : Arrow ℂ A B ) → Epimorphism {ℂ = ℂ} {X = X} f → Monomorphism {ℂ = ℂ} {X = X} f → Isomorphism {ℂ = ℂ} f) epi-mono-is-not-iso f = let k = f {!!} {!!} {!!} {!!} in {!!} -} -- Isomorphism of objects _≅_ : { ℓ ℓ' : Level } → { ℂ : Category {ℓ} {ℓ'} } → ( A B : Object ℂ ) → Set ℓ' _≅_ {ℂ = ℂ} A B = Σ[ f ∈ ℂ.Arrow A B ] (Isomorphism {ℂ = ℂ} f) where open module ℂ = Category ℂ Product : {ℓ : Level} → ( C D : Category {ℓ} {ℓ} ) → Category {ℓ} {ℓ} Product C D = record { Object = C.Object × D.Object ; Arrow = λ { (c , d) (c' , d') → let carr = C.Arrow c c' darr = D.Arrow d d' in carr × darr} ; 𝟙 = C.𝟙 , D.𝟙 ; _⊕_ = λ { (bc∈C , bc∈D) (ab∈C , ab∈D) → bc∈C C.⊕ ab∈C , bc∈D D.⊕ ab∈D} ; assoc = eqpair C.assoc D.assoc ; ident = let (Cl , Cr) = C.ident (Dl , Dr) = D.ident in eqpair Cl Dl , eqpair Cr Dr } where open module C = Category C open module D = Category D -- Two pairs are equal if their components are equal. eqpair : {ℓ : Level} → { A : Set ℓ } → { B : Set ℓ } → { a a' : A } → { b b' : B } → a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b') eqpair {a = a} {b = b} eqa eqb = subst eqa (subst eqb (refl {x = (a , b)})) Opposite : ∀ {ℓ ℓ'} → Category {ℓ} {ℓ'} → Category {ℓ} {ℓ'} Opposite ℂ = record { Object = ℂ.Object ; Arrow = λ A B → ℂ.Arrow B A ; 𝟙 = ℂ.𝟙 ; _⊕_ = λ g f → f ℂ.⊕ g ; assoc = sym ℂ.assoc ; ident = swap ℂ.ident } where open module ℂ = Category ℂ Hom : {ℓ ℓ' : Level} → (ℂ : Category {ℓ} {ℓ'}) → (A B : Object ℂ) → Set ℓ' Hom ℂ A B = Arrow ℂ A B module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} where private Obj = Object ℂ Arr = Arrow ℂ _+_ = _⊕_ ℂ HomFromArrow : (A : Obj) → {B B' : Obj} → (g : Arr B B') → Hom ℂ A B → Hom ℂ A B' HomFromArrow _A g = λ f → g + f