module Cat.Functor where open import Agda.Primitive open import Cubical open import Function open import Cat.Category open Category module _ {ℓc ℓc' ℓd ℓd'} (ℂ : Category ℓc ℓc') (𝔻 : Category ℓd ℓd') where record IsFunctor (func* : ℂ .Object → 𝔻 .Object) (func→ : {A B : ℂ .Object} → ℂ [ A , B ] → 𝔻 [ func* A , func* B ]) : Set (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') where field ident : { c : ℂ .Object } → func→ (ℂ .𝟙 {c}) ≡ 𝔻 .𝟙 {func* c} -- TODO: Avoid use of ugly explicit arguments somehow. -- This guy managed to do it: -- https://github.com/copumpkin/categories/blob/master/Categories/Functor/Core.agda distrib : {A B C : ℂ .Object} {f : ℂ [ A , B ]} {g : ℂ [ B , C ]} → func→ (ℂ [ g ∘ f ]) ≡ 𝔻 [ func→ g ∘ func→ f ] record Functor : Set (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') where field func* : ℂ .Object → 𝔻 .Object func→ : ∀ {A B} → ℂ [ A , B ] → 𝔻 [ func* A , func* B ] {{isFunctor}} : IsFunctor func* func→ open IsFunctor open Functor module _ {ℓ ℓ' : Level} {ℂ 𝔻 : Category ℓ ℓ'} where -- IsFunctor≡ : ∀ {A B : ℂ .Object} {func* : ℂ .Object → 𝔻 .Object} {func→ : {A B : ℂ .Object} → ℂ .Arrow A B → 𝔻 .Arrow (func* A) (func* B)} {F G : IsFunctor ℂ 𝔻 func* func→} -- → (eqI : PathP (λ i → ∀ {A : ℂ .Object} → func→ (ℂ .𝟙 {A}) ≡ 𝔻 .𝟙 {func* A}) -- (F .ident) (G .ident)) -- → (eqD : PathP (λ i → {A B C : ℂ .Object} {f : ℂ .Arrow A B} {g : ℂ .Arrow B C} -- → func→ (ℂ ._⊕_ g f) ≡ 𝔻 ._⊕_ (func→ g) (func→ f)) -- (F .distrib) (G .distrib)) -- → F ≡ G -- IsFunctor≡ eqI eqD i = record { ident = eqI i ; distrib = eqD i } Functor≡ : {F G : Functor ℂ 𝔻} → (eq* : F .func* ≡ G .func*) → (eq→ : PathP (λ i → ∀ {x y} → ℂ [ x , y ] → 𝔻 [ eq* i x , eq* i y ]) (F .func→) (G .func→)) -- → (eqIsF : PathP (λ i → IsFunctor ℂ 𝔻 (eq* i) (eq→ i)) (F .isFunctor) (G .isFunctor)) → (eqI : PathP (λ i → ∀ {A : ℂ .Object} → eq→ i (ℂ .𝟙 {A}) ≡ 𝔻 .𝟙 {eq* i A}) (F .isFunctor .ident) (G .isFunctor .ident)) → (eqD : PathP (λ i → {A B C : ℂ .Object} {f : ℂ [ A , B ]} {g : ℂ [ B , C ]} → eq→ i (ℂ [ g ∘ f ]) ≡ 𝔻 [ eq→ i g ∘ eq→ i f ]) (F .isFunctor .distrib) (G .isFunctor .distrib)) → F ≡ G Functor≡ eq* eq→ eqI eqD i = record { func* = eq* i ; func→ = eq→ i ; isFunctor = record { ident = eqI i ; distrib = eqD i } } module _ {ℓ ℓ' : Level} {A B C : Category ℓ ℓ'} (F : Functor B C) (G : Functor A B) where private F* = F .func* F→ = F .func→ G* = G .func* G→ = G .func→ module _ {a0 a1 a2 : A .Object} {α0 : A [ a0 , a1 ]} {α1 : A [ a1 , a2 ]} where dist : (F→ ∘ G→) (A [ α1 ∘ α0 ]) ≡ C [ (F→ ∘ G→) α1 ∘ (F→ ∘ G→) α0 ] dist = begin (F→ ∘ G→) (A [ α1 ∘ α0 ]) ≡⟨ refl ⟩ F→ (G→ (A [ α1 ∘ α0 ])) ≡⟨ cong F→ (G .isFunctor .distrib)⟩ F→ (B [ G→ α1 ∘ G→ α0 ]) ≡⟨ F .isFunctor .distrib ⟩ C [ (F→ ∘ G→) α1 ∘ (F→ ∘ G→) α0 ] ∎ _∘f_ : Functor A C _∘f_ = record { func* = F* ∘ G* ; func→ = F→ ∘ G→ ; isFunctor = record { ident = begin (F→ ∘ G→) (A .𝟙) ≡⟨ refl ⟩ F→ (G→ (A .𝟙)) ≡⟨ cong F→ (G .isFunctor .ident)⟩ F→ (B .𝟙) ≡⟨ F .isFunctor .ident ⟩ C .𝟙 ∎ ; distrib = dist } } -- The identity functor identity : ∀ {ℓ ℓ'} → {C : Category ℓ ℓ'} → Functor C C identity = record { func* = λ x → x ; func→ = λ x → x ; isFunctor = record { ident = refl ; distrib = refl } }