-- There is no category of categories in our interpretation {-# OPTIONS --cubical --allow-unsolved-metas #-} module Cat.Categories.Cat where open import Agda.Primitive open import Cubical open import Function open import Data.Product renaming (proj₁ to fst ; proj₂ to snd) open import Cat.Category open import Cat.Functor open import Cat.Equality open Equality.Data.Product open Functor open IsFunctor open Category hiding (_∘_) -- The category of categories module _ (ℓ ℓ' : Level) where private module _ {𝔸 𝔹 ℂ 𝔻 : Category ℓ ℓ'} {F : Functor 𝔸 𝔹} {G : Functor 𝔹 ℂ} {H : Functor ℂ 𝔻} where private eq* : func* (H ∘f (G ∘f F)) ≡ func* ((H ∘f G) ∘f F) eq* = refl eq→ : PathP (λ i → {A B : 𝔸 .Object} → 𝔸 [ A , B ] → 𝔻 [ eq* i A , eq* i B ]) (func→ (H ∘f (G ∘f F))) (func→ ((H ∘f G) ∘f F)) eq→ = refl postulate eqI : (λ i → ∀ {A : 𝔸 .Object} → eq→ i (𝔸 .𝟙 {A}) ≡ 𝔻 .𝟙 {eq* i A}) [ (H ∘f (G ∘f F)) .isFunctor .ident ≡ ((H ∘f G) ∘f F) .isFunctor .ident ] eqD : (λ i → ∀ {A B C} {f : 𝔸 [ A , B ]} {g : 𝔸 [ B , C ]} → eq→ i (𝔸 [ g ∘ f ]) ≡ 𝔻 [ eq→ i g ∘ eq→ i f ]) [ (H ∘f (G ∘f F)) .isFunctor .distrib ≡ ((H ∘f G) ∘f F) .isFunctor .distrib ] assc : H ∘f (G ∘f F) ≡ (H ∘f G) ∘f F assc = Functor≡ eq* eq→ (IsFunctor≡ eqI eqD) module _ {ℂ 𝔻 : Category ℓ ℓ'} {F : Functor ℂ 𝔻} where module _ where private eq* : (func* F) ∘ (func* (identity {C = ℂ})) ≡ func* F eq* = refl -- lemmm : func→ {C = A} {D = B} (f ∘f identity) ≡ func→ f eq→ : PathP (λ i → {x y : Object ℂ} → Arrow ℂ x y → Arrow 𝔻 (func* F x) (func* F y)) (func→ (F ∘f identity)) (func→ F) eq→ = refl postulate eqI-r : (λ i → {c : ℂ .Object} → (λ _ → 𝔻 [ func* F c , func* F c ]) [ func→ F (ℂ .𝟙) ≡ 𝔻 .𝟙 ]) [(F ∘f identity) .isFunctor .ident ≡ F .isFunctor .ident ] eqD-r : PathP (λ i → {A B C : ℂ .Object} {f : ℂ .Arrow A B} {g : ℂ .Arrow B C} → eq→ i (ℂ [ g ∘ f ]) ≡ 𝔻 [ eq→ i g ∘ eq→ i f ]) ((F ∘f identity) .isFunctor .distrib) (F .isFunctor .distrib) ident-r : F ∘f identity ≡ F ident-r = Functor≡ eq* eq→ (IsFunctor≡ eqI-r eqD-r) module _ where private postulate eq* : (identity ∘f F) .func* ≡ F .func* eq→ : PathP (λ i → {x y : Object ℂ} → ℂ .Arrow x y → 𝔻 .Arrow (eq* i x) (eq* i y)) ((identity ∘f F) .func→) (F .func→) eqI : (λ i → ∀ {A : ℂ .Object} → eq→ i (ℂ .𝟙 {A}) ≡ 𝔻 .𝟙 {eq* i A}) [ ((identity ∘f F) .isFunctor .ident) ≡ (F .isFunctor .ident) ] eqD : PathP (λ i → {A B C : ℂ .Object} {f : ℂ .Arrow A B} {g : ℂ .Arrow B C} → eq→ i (ℂ [ g ∘ f ]) ≡ 𝔻 [ eq→ i g ∘ eq→ i f ]) ((identity ∘f F) .isFunctor .distrib) (F .isFunctor .distrib) -- (λ z → eq* i z) (eq→ i) ident-l : identity ∘f F ≡ F ident-l = Functor≡ eq* eq→ λ i → record { ident = eqI i ; distrib = eqD i } Cat : Category (lsuc (ℓ ⊔ ℓ')) (ℓ ⊔ ℓ') Cat = record { Object = Category ℓ ℓ' ; Arrow = Functor ; 𝟙 = identity ; _∘_ = _∘f_ -- What gives here? Why can I not name the variables directly? ; isCategory = record { assoc = λ {_ _ _ _ F G H} → assc {F = F} {G = G} {H = H} ; ident = ident-r , ident-l } } module _ {ℓ ℓ' : Level} where module _ (ℂ 𝔻 : Category ℓ ℓ') where private Catt = Cat ℓ ℓ' :Object: = ℂ .Object × 𝔻 .Object :Arrow: : :Object: → :Object: → Set ℓ' :Arrow: (c , d) (c' , d') = Arrow ℂ c c' × Arrow 𝔻 d d' :𝟙: : {o : :Object:} → :Arrow: o o :𝟙: = ℂ .𝟙 , 𝔻 .𝟙 _:⊕:_ : {a b c : :Object:} → :Arrow: b c → :Arrow: a b → :Arrow: a c _:⊕:_ = λ { (bc∈C , bc∈D) (ab∈C , ab∈D) → ℂ [ bc∈C ∘ ab∈C ] , 𝔻 [ bc∈D ∘ ab∈D ]} instance :isCategory: : IsCategory :Object: :Arrow: :𝟙: _:⊕:_ :isCategory: = record { assoc = Σ≡ C.assoc D.assoc ; ident = Σ≡ (fst C.ident) (fst D.ident) , Σ≡ (snd C.ident) (snd D.ident) } where open module C = IsCategory (ℂ .isCategory) open module D = IsCategory (𝔻 .isCategory) :product: : Category ℓ ℓ' :product: = record { Object = :Object: ; Arrow = :Arrow: ; 𝟙 = :𝟙: ; _∘_ = _:⊕:_ } proj₁ : Catt [ :product: , ℂ ] proj₁ = record { func* = fst ; func→ = fst ; isFunctor = record { ident = refl ; distrib = refl } } proj₂ : Catt [ :product: , 𝔻 ] proj₂ = record { func* = snd ; func→ = snd ; isFunctor = record { ident = refl ; distrib = refl } } module _ {X : Object Catt} (x₁ : Catt [ X , ℂ ]) (x₂ : Catt [ X , 𝔻 ]) where open Functor x : Functor X :product: x = record { func* = λ x → x₁ .func* x , x₂ .func* x ; func→ = λ x → func→ x₁ x , func→ x₂ x ; isFunctor = record { ident = Σ≡ x₁.ident x₂.ident ; distrib = Σ≡ x₁.distrib x₂.distrib } } where open module x₁ = IsFunctor (x₁ .isFunctor) open module x₂ = IsFunctor (x₂ .isFunctor) isUniqL : Catt [ proj₁ ∘ x ] ≡ x₁ isUniqL = Functor≡ eq* eq→ eqIsF -- Functor≡ refl refl λ i → record { ident = refl i ; distrib = refl i } where eq* : (Catt [ proj₁ ∘ x ]) .func* ≡ x₁ .func* eq* = refl eq→ : (λ i → {A : X .Object} {B : X .Object} → X [ A , B ] → ℂ [ eq* i A , eq* i B ]) [ (Catt [ proj₁ ∘ x ]) .func→ ≡ x₁ .func→ ] eq→ = refl postulate eqIsF : (Catt [ proj₁ ∘ x ]) .isFunctor ≡ x₁ .isFunctor -- eqIsF = IsFunctor≡ {!refl!} {!!} postulate isUniqR : Catt [ proj₂ ∘ x ] ≡ x₂ -- isUniqR = Functor≡ refl refl {!!} {!!} isUniq : Catt [ proj₁ ∘ x ] ≡ x₁ × Catt [ proj₂ ∘ x ] ≡ x₂ isUniq = isUniqL , isUniqR uniq : ∃![ x ] (Catt [ proj₁ ∘ x ] ≡ x₁ × Catt [ proj₂ ∘ x ] ≡ x₂) uniq = x , isUniq instance isProduct : IsProduct (Cat ℓ ℓ') proj₁ proj₂ isProduct = uniq product : Product {ℂ = (Cat ℓ ℓ')} ℂ 𝔻 product = record { obj = :product: ; proj₁ = proj₁ ; proj₂ = proj₂ } module _ {ℓ ℓ' : Level} where instance hasProducts : HasProducts (Cat ℓ ℓ') hasProducts = record { product = product } -- Basically proves that `Cat ℓ ℓ` is cartesian closed. module _ (ℓ : Level) where private open Data.Product open import Cat.Categories.Fun Catℓ : Category (lsuc (ℓ ⊔ ℓ)) (ℓ ⊔ ℓ) Catℓ = Cat ℓ ℓ module _ (ℂ 𝔻 : Category ℓ ℓ) where private :obj: : Cat ℓ ℓ .Object :obj: = Fun {ℂ = ℂ} {𝔻 = 𝔻} :func*: : Functor ℂ 𝔻 × ℂ .Object → 𝔻 .Object :func*: (F , A) = F .func* A module _ {dom cod : Functor ℂ 𝔻 × ℂ .Object} where private F : Functor ℂ 𝔻 F = proj₁ dom A : ℂ .Object A = proj₂ dom G : Functor ℂ 𝔻 G = proj₁ cod B : ℂ .Object B = proj₂ cod :func→: : (pobj : NaturalTransformation F G × ℂ .Arrow A B) → 𝔻 .Arrow (F .func* A) (G .func* B) :func→: ((θ , θNat) , f) = result where θA : 𝔻 .Arrow (F .func* A) (G .func* A) θA = θ A θB : 𝔻 .Arrow (F .func* B) (G .func* B) θB = θ B F→f : 𝔻 .Arrow (F .func* A) (F .func* B) F→f = F .func→ f G→f : 𝔻 .Arrow (G .func* A) (G .func* B) G→f = G .func→ f l : 𝔻 .Arrow (F .func* A) (G .func* B) l = 𝔻 [ θB ∘ F→f ] r : 𝔻 .Arrow (F .func* A) (G .func* B) r = 𝔻 [ G→f ∘ θA ] -- There are two choices at this point, -- but I suppose the whole point is that -- by `θNat f` we have `l ≡ r` -- lem : 𝔻 [ θ B ∘ F .func→ f ] ≡ 𝔻 [ G .func→ f ∘ θ A ] -- lem = θNat f result : 𝔻 .Arrow (F .func* A) (G .func* B) result = l _×p_ = product module _ {c : Functor ℂ 𝔻 × ℂ .Object} where private F : Functor ℂ 𝔻 F = proj₁ c C : ℂ .Object C = proj₂ c -- NaturalTransformation F G × ℂ .Arrow A B -- :ident: : :func→: {c} {c} (identityNat F , ℂ .𝟙) ≡ 𝔻 .𝟙 -- :ident: = trans (proj₂ 𝔻.ident) (F .ident) -- where -- open module 𝔻 = IsCategory (𝔻 .isCategory) -- Unfortunately the equational version has some ambigous arguments. :ident: : :func→: {c} {c} (identityNat F , ℂ .𝟙 {o = proj₂ c}) ≡ 𝔻 .𝟙 :ident: = begin :func→: {c} {c} ((:obj: ×p ℂ) .Product.obj .𝟙 {c}) ≡⟨⟩ :func→: {c} {c} (identityNat F , ℂ .𝟙) ≡⟨⟩ 𝔻 [ identityTrans F C ∘ F .func→ (ℂ .𝟙)] ≡⟨⟩ 𝔻 [ 𝔻 .𝟙 ∘ F .func→ (ℂ .𝟙)] ≡⟨ proj₂ 𝔻.ident ⟩ F .func→ (ℂ .𝟙) ≡⟨ F.ident ⟩ 𝔻 .𝟙 ∎ where open module 𝔻 = IsCategory (𝔻 .isCategory) open module F = IsFunctor (F .isFunctor) module _ {F×A G×B H×C : Functor ℂ 𝔻 × ℂ .Object} where F = F×A .proj₁ A = F×A .proj₂ G = G×B .proj₁ B = G×B .proj₂ H = H×C .proj₁ C = H×C .proj₂ -- Not entirely clear what this is at this point: _P⊕_ = (:obj: ×p ℂ) .Product.obj .Category._∘_ {F×A} {G×B} {H×C} module _ -- NaturalTransformation F G × ℂ .Arrow A B {θ×f : NaturalTransformation F G × ℂ .Arrow A B} {η×g : NaturalTransformation G H × ℂ .Arrow B C} where private θ : Transformation F G θ = proj₁ (proj₁ θ×f) θNat : Natural F G θ θNat = proj₂ (proj₁ θ×f) f : ℂ .Arrow A B f = proj₂ θ×f η : Transformation G H η = proj₁ (proj₁ η×g) ηNat : Natural G H η ηNat = proj₂ (proj₁ η×g) g : ℂ .Arrow B C g = proj₂ η×g ηθNT : NaturalTransformation F H ηθNT = Fun .Category._∘_ {F} {G} {H} (η , ηNat) (θ , θNat) ηθ = proj₁ ηθNT ηθNat = proj₂ ηθNT :distrib: : 𝔻 [ 𝔻 [ η C ∘ θ C ] ∘ F .func→ ( ℂ [ g ∘ f ] ) ] ≡ 𝔻 [ 𝔻 [ η C ∘ G .func→ g ] ∘ 𝔻 [ θ B ∘ F .func→ f ] ] :distrib: = begin 𝔻 [ (ηθ C) ∘ F .func→ (ℂ [ g ∘ f ]) ] ≡⟨ ηθNat (ℂ [ g ∘ f ]) ⟩ 𝔻 [ H .func→ (ℂ [ g ∘ f ]) ∘ (ηθ A) ] ≡⟨ cong (λ φ → 𝔻 [ φ ∘ ηθ A ]) (H.distrib) ⟩ 𝔻 [ 𝔻 [ H .func→ g ∘ H .func→ f ] ∘ (ηθ A) ] ≡⟨ sym assoc ⟩ 𝔻 [ H .func→ g ∘ 𝔻 [ H .func→ f ∘ ηθ A ] ] ≡⟨ cong (λ φ → 𝔻 [ H .func→ g ∘ φ ]) assoc ⟩ 𝔻 [ H .func→ g ∘ 𝔻 [ 𝔻 [ H .func→ f ∘ η A ] ∘ θ A ] ] ≡⟨ cong (λ φ → 𝔻 [ H .func→ g ∘ φ ]) (cong (λ φ → 𝔻 [ φ ∘ θ A ]) (sym (ηNat f))) ⟩ 𝔻 [ H .func→ g ∘ 𝔻 [ 𝔻 [ η B ∘ G .func→ f ] ∘ θ A ] ] ≡⟨ cong (λ φ → 𝔻 [ H .func→ g ∘ φ ]) (sym assoc) ⟩ 𝔻 [ H .func→ g ∘ 𝔻 [ η B ∘ 𝔻 [ G .func→ f ∘ θ A ] ] ] ≡⟨ assoc ⟩ 𝔻 [ 𝔻 [ H .func→ g ∘ η B ] ∘ 𝔻 [ G .func→ f ∘ θ A ] ] ≡⟨ cong (λ φ → 𝔻 [ φ ∘ 𝔻 [ G .func→ f ∘ θ A ] ]) (sym (ηNat g)) ⟩ 𝔻 [ 𝔻 [ η C ∘ G .func→ g ] ∘ 𝔻 [ G .func→ f ∘ θ A ] ] ≡⟨ cong (λ φ → 𝔻 [ 𝔻 [ η C ∘ G .func→ g ] ∘ φ ]) (sym (θNat f)) ⟩ 𝔻 [ 𝔻 [ η C ∘ G .func→ g ] ∘ 𝔻 [ θ B ∘ F .func→ f ] ] ∎ where open IsCategory (𝔻 .isCategory) open module H = IsFunctor (H .isFunctor) :eval: : Functor ((:obj: ×p ℂ) .Product.obj) 𝔻 :eval: = record { func* = :func*: ; func→ = λ {dom} {cod} → :func→: {dom} {cod} ; isFunctor = record { ident = λ {o} → :ident: {o} ; distrib = λ {f u n k y} → :distrib: {f} {u} {n} {k} {y} } } module _ (𝔸 : Category ℓ ℓ) (F : Functor ((𝔸 ×p ℂ) .Product.obj) 𝔻) where open HasProducts (hasProducts {ℓ} {ℓ}) using (parallelProduct) postulate transpose : Functor 𝔸 :obj: eq : Catℓ [ :eval: ∘ (parallelProduct transpose (Catℓ .𝟙 {o = ℂ})) ] ≡ F catTranspose : ∃![ F~ ] (Catℓ [ :eval: ∘ (parallelProduct F~ (Catℓ .𝟙 {o = ℂ}))] ≡ F ) catTranspose = transpose , eq :isExponential: : IsExponential Catℓ ℂ 𝔻 :obj: :eval: :isExponential: = catTranspose -- :exponent: : Exponential (Cat ℓ ℓ) A B :exponent: : Exponential Catℓ ℂ 𝔻 :exponent: = record { obj = :obj: ; eval = :eval: ; isExponential = :isExponential: } hasExponentials : HasExponentials (Cat ℓ ℓ) hasExponentials = record { exponent = :exponent: }