{-# OPTIONS --allow-unsolved-metas --cubical #-} module Cat.Category where open import Agda.Primitive open import Data.Unit.Base open import Data.Product renaming ( proj₁ to fst ; proj₂ to snd ; ∃! to ∃!≈ ) open import Data.Empty import Function open import Cubical open import Cubical.GradLemma using ( propIsEquiv ) ∃! : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∃! = ∃!≈ _≡_ ∃!-syntax : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b) ∃!-syntax = ∃ syntax ∃!-syntax (λ x → B) = ∃![ x ] B -- Thierry: All projections must be `isProp`'s -- According to definitions 9.1.1 and 9.1.6 in the HoTT book the -- arrows of a category form a set (arrow-is-set), and there is an -- equivalence between the equality of objects and isomorphisms -- (univalent). record IsCategory {ℓ ℓ' : Level} (Object : Set ℓ) (Arrow : Object → Object → Set ℓ') (𝟙 : {o : Object} → Arrow o o) (_∘_ : { a b c : Object } → Arrow b c → Arrow a b → Arrow a c) : Set (lsuc (ℓ' ⊔ ℓ)) where field assoc : {A B C D : Object} { f : Arrow A B } { g : Arrow B C } { h : Arrow C D } → h ∘ (g ∘ f) ≡ (h ∘ g) ∘ f ident : {A B : Object} {f : Arrow A B} → f ∘ 𝟙 ≡ f × 𝟙 ∘ f ≡ f arrow-is-set : ∀ {A B : Object} → isSet (Arrow A B) Isomorphism : ∀ {A B} → (f : Arrow A B) → Set ℓ' Isomorphism {A} {B} f = Σ[ g ∈ Arrow B A ] g ∘ f ≡ 𝟙 × f ∘ g ≡ 𝟙 _≅_ : (A B : Object) → Set ℓ' _≅_ A B = Σ[ f ∈ Arrow A B ] (Isomorphism f) idIso : (A : Object) → A ≅ A idIso A = 𝟙 , (𝟙 , ident) id-to-iso : (A B : Object) → A ≡ B → A ≅ B id-to-iso A B eq = transp (\ i → A ≅ eq i) (idIso A) -- TODO: might want to implement isEquiv differently, there are 3 -- equivalent formulations in the book. field univalent : {A B : Object} → isEquiv (A ≡ B) (A ≅ B) (id-to-iso A B) module _ {A B : Object} where Epimorphism : {X : Object } → (f : Arrow A B) → Set ℓ' Epimorphism {X} f = ( g₀ g₁ : Arrow B X ) → g₀ ∘ f ≡ g₁ ∘ f → g₀ ≡ g₁ Monomorphism : {X : Object} → (f : Arrow A B) → Set ℓ' Monomorphism {X} f = ( g₀ g₁ : Arrow X A ) → f ∘ g₀ ≡ f ∘ g₁ → g₀ ≡ g₁ module _ {ℓ} {ℓ'} {Object : Set ℓ} {Arrow : Object → Object → Set ℓ'} {𝟙 : {o : Object} → Arrow o o} {_⊕_ : { a b c : Object } → Arrow b c → Arrow a b → Arrow a c} where -- TODO, provable by using arrow-is-set and that isProp (isEquiv _ _ _) -- This lemma will be useful to prove the equality of two categories. IsCategory-is-prop : isProp (IsCategory Object Arrow 𝟙 _⊕_) IsCategory-is-prop x y i = record { assoc = x.arrow-is-set _ _ x.assoc y.assoc i ; ident = ( x.arrow-is-set _ _ (fst x.ident) (fst y.ident) i , x.arrow-is-set _ _ (snd x.ident) (snd y.ident) i ) -- ; arrow-is-set = {!λ x₁ y₁ p q → x.arrow-is-set _ _ p q!} ; arrow-is-set = λ _ _ p q → let golden : x.arrow-is-set _ _ p q ≡ y.arrow-is-set _ _ p q golden = λ j k l → {!!} in golden i ; univalent = λ y₁ → {!!} } where module x = IsCategory x module y = IsCategory y record Category (ℓ ℓ' : Level) : Set (lsuc (ℓ' ⊔ ℓ)) where -- adding no-eta-equality can speed up type-checking. -- ONLY IF you define your categories with copatterns though. no-eta-equality field -- Need something like: -- Object : Σ (Set ℓ) isGroupoid Object : Set ℓ -- And: -- Arrow : Object → Object → Σ (Set ℓ') isSet Arrow : Object → Object → Set ℓ' 𝟙 : {o : Object} → Arrow o o _∘_ : {A B C : Object} → Arrow B C → Arrow A B → Arrow A C {{isCategory}} : IsCategory Object Arrow 𝟙 _∘_ infixl 10 _∘_ domain : { a b : Object } → Arrow a b → Object domain {a = a} _ = a codomain : { a b : Object } → Arrow a b → Object codomain {b = b} _ = b open Category _[_,_] : ∀ {ℓ ℓ'} → (ℂ : Category ℓ ℓ') → (A : ℂ .Object) → (B : ℂ .Object) → Set ℓ' _[_,_] = Arrow _[_∘_] : ∀ {ℓ ℓ'} → (ℂ : Category ℓ ℓ') → {A B C : ℂ .Object} → (g : ℂ [ B , C ]) → (f : ℂ [ A , B ]) → ℂ [ A , C ] _[_∘_] = _∘_ module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') {A B obj : Object ℂ} where IsProduct : (π₁ : Arrow ℂ obj A) (π₂ : Arrow ℂ obj B) → Set (ℓ ⊔ ℓ') IsProduct π₁ π₂ = ∀ {X : ℂ .Object} (x₁ : ℂ .Arrow X A) (x₂ : ℂ .Arrow X B) → ∃![ x ] (ℂ [ π₁ ∘ x ] ≡ x₁ × ℂ [ π₂ ∘ x ] ≡ x₂) -- Tip from Andrea; Consider this style for efficiency: -- record IsProduct {ℓ ℓ' : Level} (ℂ : Category {ℓ} {ℓ'}) -- {A B obj : Object ℂ} (π₁ : Arrow ℂ obj A) (π₂ : Arrow ℂ obj B) : Set (ℓ ⊔ ℓ') where -- field -- isProduct : ∀ {X : ℂ .Object} (x₁ : ℂ .Arrow X A) (x₂ : ℂ .Arrow X B) -- → ∃![ x ] (ℂ ._⊕_ π₁ x ≡ x₁ × ℂ. _⊕_ π₂ x ≡ x₂) record Product {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} (A B : ℂ .Object) : Set (ℓ ⊔ ℓ') where no-eta-equality field obj : ℂ .Object proj₁ : ℂ .Arrow obj A proj₂ : ℂ .Arrow obj B {{isProduct}} : IsProduct ℂ proj₁ proj₂ arrowProduct : ∀ {X} → (π₁ : Arrow ℂ X A) (π₂ : Arrow ℂ X B) → Arrow ℂ X obj arrowProduct π₁ π₂ = fst (isProduct π₁ π₂) record HasProducts {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') : Set (ℓ ⊔ ℓ') where field product : ∀ (A B : ℂ .Object) → Product {ℂ = ℂ} A B open Product objectProduct : (A B : ℂ .Object) → ℂ .Object objectProduct A B = Product.obj (product A B) -- The product mentioned in awodey in Def 6.1 is not the regular product of arrows. -- It's a "parallel" product parallelProduct : {A A' B B' : ℂ .Object} → ℂ .Arrow A A' → ℂ .Arrow B B' → ℂ .Arrow (objectProduct A B) (objectProduct A' B') parallelProduct {A = A} {A' = A'} {B = B} {B' = B'} a b = arrowProduct (product A' B') (ℂ [ a ∘ (product A B) .proj₁ ]) (ℂ [ b ∘ (product A B) .proj₂ ]) module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') where Opposite : Category ℓ ℓ' Opposite = record { Object = ℂ .Object ; Arrow = Function.flip (ℂ .Arrow) ; 𝟙 = ℂ .𝟙 ; _∘_ = Function.flip (ℂ ._∘_) ; isCategory = record { assoc = sym assoc ; ident = swap ident ; arrow-is-set = {!!} ; univalent = {!!} } } where open IsCategory (ℂ .isCategory) -- A consequence of no-eta-equality; `Opposite-is-involution` is no longer -- definitional - i.e.; you must match on the fields: -- -- Opposite-is-involution : ∀ {ℓ ℓ'} → {C : Category {ℓ} {ℓ'}} → Opposite (Opposite C) ≡ C -- Object (Opposite-is-involution {C = C} i) = Object C -- Arrow (Opposite-is-involution i) = {!!} -- 𝟙 (Opposite-is-involution i) = {!!} -- _⊕_ (Opposite-is-involution i) = {!!} -- assoc (Opposite-is-involution i) = {!!} -- ident (Opposite-is-involution i) = {!!} Hom : {ℓ ℓ' : Level} → (ℂ : Category ℓ ℓ') → (A B : Object ℂ) → Set ℓ' Hom ℂ A B = Arrow ℂ A B module _ {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} where HomFromArrow : (A : ℂ .Object) → {B B' : ℂ .Object} → (g : ℂ .Arrow B B') → Hom ℂ A B → Hom ℂ A B' HomFromArrow _A = ℂ ._∘_ module _ {ℓ ℓ'} (ℂ : Category ℓ ℓ') {{hasProducts : HasProducts ℂ}} where open HasProducts hasProducts open Product hiding (obj) private _×p_ : (A B : ℂ .Object) → ℂ .Object _×p_ A B = Product.obj (product A B) module _ (B C : ℂ .Category.Object) where IsExponential : (Cᴮ : ℂ .Object) → ℂ .Arrow (Cᴮ ×p B) C → Set (ℓ ⊔ ℓ') IsExponential Cᴮ eval = ∀ (A : ℂ .Object) (f : ℂ .Arrow (A ×p B) C) → ∃![ f~ ] (ℂ [ eval ∘ parallelProduct f~ (ℂ .𝟙)] ≡ f) record Exponential : Set (ℓ ⊔ ℓ') where field -- obj ≡ Cᴮ obj : ℂ .Object eval : ℂ .Arrow ( obj ×p B ) C {{isExponential}} : IsExponential obj eval -- If I make this an instance-argument then the instance resolution -- algorithm goes into an infinite loop. Why? exponentialsHaveProducts : HasProducts ℂ exponentialsHaveProducts = hasProducts transpose : (A : ℂ .Object) → ℂ .Arrow (A ×p B) C → ℂ .Arrow A obj transpose A f = fst (isExponential A f) record HasExponentials {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') {{_ : HasProducts ℂ}} : Set (ℓ ⊔ ℓ') where field exponent : (A B : ℂ .Object) → Exponential ℂ A B record CartesianClosed {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') : Set (ℓ ⊔ ℓ') where field {{hasProducts}} : HasProducts ℂ {{hasExponentials}} : HasExponentials ℂ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where unique = isContr IsInitial : ℂ .Object → Set (ℓa ⊔ ℓb) IsInitial I = {X : ℂ .Object} → unique (ℂ .Arrow I X) IsTerminal : ℂ .Object → Set (ℓa ⊔ ℓb) -- ∃![ ? ] ? IsTerminal T = {X : ℂ .Object} → unique (ℂ .Arrow X T) Initial : Set (ℓa ⊔ ℓb) Initial = Σ (ℂ .Object) IsInitial Terminal : Set (ℓa ⊔ ℓb) Terminal = Σ (ℂ .Object) IsTerminal