203 lines
6.5 KiB
Agda
203 lines
6.5 KiB
Agda
{-# OPTIONS --cubical #-}
|
||
module Cat.Category.Functor where
|
||
|
||
open import Cat.Prelude
|
||
open import Function
|
||
|
||
open import Cubical
|
||
open import Cubical.NType.Properties using (lemPropF)
|
||
|
||
open import Cat.Category
|
||
|
||
module _ {ℓc ℓc' ℓd ℓd'}
|
||
(ℂ : Category ℓc ℓc')
|
||
(𝔻 : Category ℓd ℓd')
|
||
where
|
||
|
||
private
|
||
module ℂ = Category ℂ
|
||
module 𝔻 = Category 𝔻
|
||
ℓ = ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd'
|
||
𝓤 = Set ℓ
|
||
|
||
Omap = ℂ.Object → 𝔻.Object
|
||
Fmap : Omap → Set _
|
||
Fmap omap = ∀ {A B}
|
||
→ ℂ [ A , B ] → 𝔻 [ omap A , omap B ]
|
||
record RawFunctor : 𝓤 where
|
||
field
|
||
omap : ℂ.Object → 𝔻.Object
|
||
fmap : ∀ {A B} → ℂ [ A , B ] → 𝔻 [ omap A , omap B ]
|
||
|
||
IsIdentity : Set _
|
||
IsIdentity = {A : ℂ.Object} → fmap (ℂ.identity {A}) ≡ 𝔻.identity {omap A}
|
||
|
||
IsDistributive : Set _
|
||
IsDistributive = {A B C : ℂ.Object} {f : ℂ [ A , B ]} {g : ℂ [ B , C ]}
|
||
→ fmap (ℂ [ g ∘ f ]) ≡ 𝔻 [ fmap g ∘ fmap f ]
|
||
|
||
-- | Equality principle for raw functors
|
||
--
|
||
-- The type of `fmap` depend on the value of `omap`. We can wrap this up
|
||
-- into an equality principle for this type like is done for e.g. `Σ` using
|
||
-- `pathJ`.
|
||
module _ {x y : RawFunctor} where
|
||
open RawFunctor
|
||
private
|
||
P : (omap' : Omap) → (eq : omap x ≡ omap') → Set _
|
||
P y eq = (fmap' : Fmap y) → (λ i → Fmap (eq i))
|
||
[ fmap x ≡ fmap' ]
|
||
module _
|
||
(eq : (λ i → Omap) [ omap x ≡ omap y ])
|
||
(kk : P (omap x) refl)
|
||
where
|
||
private
|
||
p : P (omap y) eq
|
||
p = pathJ P kk (omap y) eq
|
||
eq→ : (λ i → Fmap (eq i)) [ fmap x ≡ fmap y ]
|
||
eq→ = p (fmap y)
|
||
RawFunctor≡ : x ≡ y
|
||
omap (RawFunctor≡ i) = eq i
|
||
fmap (RawFunctor≡ i) = eq→ i
|
||
|
||
record IsFunctor (F : RawFunctor) : 𝓤 where
|
||
open RawFunctor F public
|
||
field
|
||
-- FIXME Really ought to be preserves identity or something like this.
|
||
isIdentity : IsIdentity
|
||
isDistributive : IsDistributive
|
||
|
||
record Functor : Set (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') where
|
||
field
|
||
raw : RawFunctor
|
||
{{isFunctor}} : IsFunctor raw
|
||
|
||
open IsFunctor isFunctor public
|
||
|
||
EndoFunctor : ∀ {ℓa ℓb} (ℂ : Category ℓa ℓb) → Set _
|
||
EndoFunctor ℂ = Functor ℂ ℂ
|
||
|
||
module _
|
||
{ℓc ℓc' ℓd ℓd' : Level}
|
||
{ℂ : Category ℓc ℓc'} {𝔻 : Category ℓd ℓd'}
|
||
(F : RawFunctor ℂ 𝔻)
|
||
where
|
||
private
|
||
module 𝔻 = Category 𝔻
|
||
|
||
propIsFunctor : isProp (IsFunctor _ _ F)
|
||
propIsFunctor isF0 isF1 i = record
|
||
{ isIdentity = 𝔻.arrowsAreSets _ _ isF0.isIdentity isF1.isIdentity i
|
||
; isDistributive = 𝔻.arrowsAreSets _ _ isF0.isDistributive isF1.isDistributive i
|
||
}
|
||
where
|
||
module isF0 = IsFunctor isF0
|
||
module isF1 = IsFunctor isF1
|
||
|
||
-- Alternate version of above where `F` is indexed by an interval
|
||
module _
|
||
{ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Category ℓd ℓd'}
|
||
{F : I → RawFunctor ℂ 𝔻}
|
||
where
|
||
private
|
||
module 𝔻 = Category 𝔻
|
||
IsProp' : {ℓ : Level} (A : I → Set ℓ) → Set ℓ
|
||
IsProp' A = (a0 : A i0) (a1 : A i1) → A [ a0 ≡ a1 ]
|
||
|
||
IsFunctorIsProp' : IsProp' λ i → IsFunctor _ _ (F i)
|
||
IsFunctorIsProp' isF0 isF1 = lemPropF {B = IsFunctor ℂ 𝔻}
|
||
(\ F → propIsFunctor F) (\ i → F i)
|
||
|
||
module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Category ℓd ℓd'} where
|
||
open Functor
|
||
Functor≡ : {F G : Functor ℂ 𝔻}
|
||
→ Functor.raw F ≡ Functor.raw G
|
||
→ F ≡ G
|
||
Functor.raw (Functor≡ eq i) = eq i
|
||
Functor.isFunctor (Functor≡ {F} {G} eq i)
|
||
= res i
|
||
where
|
||
res : (λ i → IsFunctor ℂ 𝔻 (eq i)) [ isFunctor F ≡ isFunctor G ]
|
||
res = IsFunctorIsProp' (isFunctor F) (isFunctor G)
|
||
|
||
module _ {ℓ0 ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 : Level}
|
||
{A : Category ℓ0 ℓ1}
|
||
{B : Category ℓ2 ℓ3}
|
||
{C : Category ℓ4 ℓ5}
|
||
(F : Functor B C) (G : Functor A B) where
|
||
private
|
||
module A = Category A
|
||
module B = Category B
|
||
module C = Category C
|
||
module F = Functor F
|
||
module G = Functor G
|
||
module _ {a0 a1 a2 : A.Object} {α0 : A [ a0 , a1 ]} {α1 : A [ a1 , a2 ]} where
|
||
dist : (F.fmap ∘ G.fmap) (A [ α1 ∘ α0 ]) ≡ C [ (F.fmap ∘ G.fmap) α1 ∘ (F.fmap ∘ G.fmap) α0 ]
|
||
dist = begin
|
||
(F.fmap ∘ G.fmap) (A [ α1 ∘ α0 ])
|
||
≡⟨ refl ⟩
|
||
F.fmap (G.fmap (A [ α1 ∘ α0 ]))
|
||
≡⟨ cong F.fmap G.isDistributive ⟩
|
||
F.fmap (B [ G.fmap α1 ∘ G.fmap α0 ])
|
||
≡⟨ F.isDistributive ⟩
|
||
C [ (F.fmap ∘ G.fmap) α1 ∘ (F.fmap ∘ G.fmap) α0 ]
|
||
∎
|
||
|
||
raw : RawFunctor A C
|
||
RawFunctor.omap raw = F.omap ∘ G.omap
|
||
RawFunctor.fmap raw = F.fmap ∘ G.fmap
|
||
|
||
isFunctor : IsFunctor A C raw
|
||
isFunctor = record
|
||
{ isIdentity = begin
|
||
(F.fmap ∘ G.fmap) A.identity ≡⟨ refl ⟩
|
||
F.fmap (G.fmap A.identity) ≡⟨ cong F.fmap (G.isIdentity)⟩
|
||
F.fmap B.identity ≡⟨ F.isIdentity ⟩
|
||
C.identity ∎
|
||
; isDistributive = dist
|
||
}
|
||
|
||
F[_∘_] : Functor A C
|
||
Functor.raw F[_∘_] = raw
|
||
Functor.isFunctor F[_∘_] = isFunctor
|
||
|
||
-- | The identity functor
|
||
module Functors where
|
||
module _ {ℓc ℓcc : Level} {ℂ : Category ℓc ℓcc} where
|
||
private
|
||
raw : RawFunctor ℂ ℂ
|
||
RawFunctor.omap raw = Function.id
|
||
RawFunctor.fmap raw = Function.id
|
||
|
||
isFunctor : IsFunctor ℂ ℂ raw
|
||
IsFunctor.isIdentity isFunctor = refl
|
||
IsFunctor.isDistributive isFunctor = refl
|
||
|
||
identity : Functor ℂ ℂ
|
||
Functor.raw identity = raw
|
||
Functor.isFunctor identity = isFunctor
|
||
|
||
module _
|
||
{ℓa ℓaa ℓb ℓbb ℓc ℓcc ℓd ℓdd : Level}
|
||
{𝔸 : Category ℓa ℓaa}
|
||
{𝔹 : Category ℓb ℓbb}
|
||
{ℂ : Category ℓc ℓcc}
|
||
{𝔻 : Category ℓd ℓdd}
|
||
{F : Functor 𝔸 𝔹} {G : Functor 𝔹 ℂ} {H : Functor ℂ 𝔻} where
|
||
isAssociative : F[ H ∘ F[ G ∘ F ] ] ≡ F[ F[ H ∘ G ] ∘ F ]
|
||
isAssociative = Functor≡ refl
|
||
|
||
module _
|
||
{ℓc ℓcc ℓd ℓdd : Level}
|
||
{ℂ : Category ℓc ℓcc}
|
||
{𝔻 : Category ℓd ℓdd}
|
||
{F : Functor ℂ 𝔻} where
|
||
leftIdentity : F[ identity ∘ F ] ≡ F
|
||
leftIdentity = Functor≡ refl
|
||
|
||
rightIdentity : F[ F ∘ identity ] ≡ F
|
||
rightIdentity = Functor≡ refl
|
||
|
||
isIdentity : F[ identity ∘ F ] ≡ F × F[ F ∘ identity ] ≡ F
|
||
isIdentity = leftIdentity , rightIdentity
|