cat/src/Cat/Category/NaturalTransformation.agda

99 lines
3.7 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- This module Essentially just provides the data for natural transformations
--
-- This includes:
--
-- The types:
--
-- * Transformation - a family of functors
-- * Natural - naturality condition for transformations
-- * NaturalTransformation - both of the above
--
-- Elements of the above:
--
-- * identityTrans - the identity transformation
-- * identityNatural - naturality for the above
-- * identity - both of the above
--
-- Functions for manipulating the above:
--
-- * A composition operator.
{-# OPTIONS --allow-unsolved-metas --cubical #-}
module Cat.Category.NaturalTransformation where
open import Agda.Primitive
open import Data.Product
open import Cubical
open import Cubical.NType.Properties
open import Cat.Category
open import Cat.Category.Functor hiding (identity)
module NaturalTransformation {c c' d d' : Level}
( : Category c c') (𝔻 : Category d d') where
open Category using (Object ; 𝟙)
module _ (F G : Functor 𝔻) where
private
module F = Functor F
module G = Functor G
-- What do you call a non-natural tranformation?
Transformation : Set (c d')
Transformation = (C : Object ) 𝔻 [ F.func* C , G.func* C ]
Natural : Transformation Set (c (c' d'))
Natural θ
= {A B : Object }
(f : [ A , B ])
𝔻 [ θ B F.func→ f ] 𝔻 [ G.func→ f θ A ]
NaturalTransformation : Set (c c' d')
NaturalTransformation = Σ Transformation Natural
-- Think I need propPi and that arrows are sets
postulate propIsNatural : (θ : _) isProp (Natural θ)
NaturalTransformation≡ : {α β : NaturalTransformation}
(eq₁ : α .proj₁ β .proj₁)
α β
NaturalTransformation≡ eq = lemSig propIsNatural _ _ eq
identityTrans : (F : Functor 𝔻) Transformation F F
identityTrans F C = 𝟙 𝔻
identityNatural : (F : Functor 𝔻) Natural F F (identityTrans F)
identityNatural F {A = A} {B = B} f = begin
𝔻 [ identityTrans F B F→ f ] ≡⟨⟩
𝔻 [ 𝟙 𝔻 F→ f ] ≡⟨ proj₂ 𝔻.isIdentity
F→ f ≡⟨ sym (proj₁ 𝔻.isIdentity)
𝔻 [ F→ f 𝟙 𝔻 ] ≡⟨⟩
𝔻 [ F→ f identityTrans F A ]
where
module F = Functor F
F→ = F.func→
module 𝔻 = Category 𝔻
identity : (F : Functor 𝔻) NaturalTransformation F F
identity F = identityTrans F , identityNatural F
module _ {F G H : Functor 𝔻} where
private
module F = Functor F
module G = Functor G
module H = Functor H
T[_∘_] : Transformation G H Transformation F G Transformation F H
T[ θ η ] C = 𝔻 [ θ C η C ]
NT[_∘_] : NaturalTransformation G H NaturalTransformation F G NaturalTransformation F H
proj₁ NT[ (θ , _) (η , _) ] = T[ θ η ]
proj₂ NT[ (θ , θNat) (η , ηNat) ] {A} {B} f = begin
𝔻 [ T[ θ η ] B F.func→ f ] ≡⟨⟩
𝔻 [ 𝔻 [ θ B η B ] F.func→ f ] ≡⟨ sym isAssociative
𝔻 [ θ B 𝔻 [ η B F.func→ f ] ] ≡⟨ cong (λ φ 𝔻 [ θ B φ ]) (ηNat f)
𝔻 [ θ B 𝔻 [ G.func→ f η A ] ] ≡⟨ isAssociative
𝔻 [ 𝔻 [ θ B G.func→ f ] η A ] ≡⟨ cong (λ φ 𝔻 [ φ η A ]) (θNat f)
𝔻 [ 𝔻 [ H.func→ f θ A ] η A ] ≡⟨ sym isAssociative
𝔻 [ H.func→ f 𝔻 [ θ A η A ] ] ≡⟨⟩
𝔻 [ H.func→ f T[ θ η ] A ]
where
open Category 𝔻