368 lines
13 KiB
Agda
368 lines
13 KiB
Agda
-- | Univalent categories
|
||
--
|
||
-- This module defines:
|
||
--
|
||
-- Categories
|
||
-- ==========
|
||
--
|
||
-- Types
|
||
-- ------
|
||
--
|
||
-- Object, Arrow
|
||
--
|
||
-- Data
|
||
-- ----
|
||
-- 𝟙; the identity arrow
|
||
-- _∘_; function composition
|
||
--
|
||
-- Laws
|
||
-- ----
|
||
--
|
||
-- associativity, identity, arrows form sets, univalence.
|
||
--
|
||
-- Lemmas
|
||
-- ------
|
||
--
|
||
-- Propositionality for all laws about the category.
|
||
{-# OPTIONS --allow-unsolved-metas --cubical #-}
|
||
|
||
module Cat.Category where
|
||
|
||
open import Agda.Primitive
|
||
open import Data.Unit.Base
|
||
open import Data.Product renaming
|
||
( proj₁ to fst
|
||
; proj₂ to snd
|
||
; ∃! to ∃!≈
|
||
)
|
||
open import Data.Empty
|
||
import Function
|
||
open import Cubical
|
||
open import Cubical.NType.Properties using ( propIsEquiv )
|
||
|
||
open import Cat.Wishlist
|
||
|
||
-----------------
|
||
-- * Utilities --
|
||
-----------------
|
||
|
||
-- | Unique existensials.
|
||
∃! : ∀ {a b} {A : Set a}
|
||
→ (A → Set b) → Set (a ⊔ b)
|
||
∃! = ∃!≈ _≡_
|
||
|
||
∃!-syntax : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b)
|
||
∃!-syntax = ∃
|
||
|
||
syntax ∃!-syntax (λ x → B) = ∃![ x ] B
|
||
|
||
-----------------
|
||
-- * Categories --
|
||
-----------------
|
||
|
||
-- | Raw categories
|
||
--
|
||
-- This record desribes the data that a category consist of as well as some laws
|
||
-- about these. The laws defined are the types the propositions - not the
|
||
-- witnesses to them!
|
||
record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||
no-eta-equality
|
||
field
|
||
Object : Set ℓa
|
||
Arrow : Object → Object → Set ℓb
|
||
𝟙 : {A : Object} → Arrow A A
|
||
_∘_ : {A B C : Object} → Arrow B C → Arrow A B → Arrow A C
|
||
|
||
infixl 10 _∘_ _>>>_
|
||
|
||
-- | Operations on data
|
||
|
||
domain : { a b : Object } → Arrow a b → Object
|
||
domain {a = a} _ = a
|
||
|
||
codomain : { a b : Object } → Arrow a b → Object
|
||
codomain {b = b} _ = b
|
||
|
||
_>>>_ : {A B C : Object} → (Arrow A B) → (Arrow B C) → Arrow A C
|
||
f >>> g = g ∘ f
|
||
|
||
-- | Laws about the data
|
||
|
||
-- FIXME It seems counter-intuitive that the normal-form is on the
|
||
-- right-hand-side.
|
||
IsAssociative : Set (ℓa ⊔ ℓb)
|
||
IsAssociative = ∀ {A B C D} {f : Arrow A B} {g : Arrow B C} {h : Arrow C D}
|
||
→ h ∘ (g ∘ f) ≡ (h ∘ g) ∘ f
|
||
|
||
IsIdentity : ({A : Object} → Arrow A A) → Set (ℓa ⊔ ℓb)
|
||
IsIdentity id = {A B : Object} {f : Arrow A B}
|
||
→ f ∘ id ≡ f × id ∘ f ≡ f
|
||
|
||
ArrowsAreSets : Set (ℓa ⊔ ℓb)
|
||
ArrowsAreSets = ∀ {A B : Object} → isSet (Arrow A B)
|
||
|
||
IsInverseOf : ∀ {A B} → (Arrow A B) → (Arrow B A) → Set ℓb
|
||
IsInverseOf = λ f g → g ∘ f ≡ 𝟙 × f ∘ g ≡ 𝟙
|
||
|
||
Isomorphism : ∀ {A B} → (f : Arrow A B) → Set ℓb
|
||
Isomorphism {A} {B} f = Σ[ g ∈ Arrow B A ] IsInverseOf f g
|
||
|
||
_≅_ : (A B : Object) → Set ℓb
|
||
_≅_ A B = Σ[ f ∈ Arrow A B ] (Isomorphism f)
|
||
|
||
module _ {A B : Object} where
|
||
Epimorphism : {X : Object } → (f : Arrow A B) → Set ℓb
|
||
Epimorphism {X} f = ( g₀ g₁ : Arrow B X ) → g₀ ∘ f ≡ g₁ ∘ f → g₀ ≡ g₁
|
||
|
||
Monomorphism : {X : Object} → (f : Arrow A B) → Set ℓb
|
||
Monomorphism {X} f = ( g₀ g₁ : Arrow X A ) → f ∘ g₀ ≡ f ∘ g₁ → g₀ ≡ g₁
|
||
|
||
IsInitial : Object → Set (ℓa ⊔ ℓb)
|
||
IsInitial I = {X : Object} → isContr (Arrow I X)
|
||
|
||
IsTerminal : Object → Set (ℓa ⊔ ℓb)
|
||
IsTerminal T = {X : Object} → isContr (Arrow X T)
|
||
|
||
Initial : Set (ℓa ⊔ ℓb)
|
||
Initial = Σ Object IsInitial
|
||
|
||
Terminal : Set (ℓa ⊔ ℓb)
|
||
Terminal = Σ Object IsTerminal
|
||
|
||
-- Univalence is indexed by a raw category as well as an identity proof.
|
||
module Univalence {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
||
open RawCategory ℂ
|
||
module _ (isIdentity : IsIdentity 𝟙) where
|
||
idIso : (A : Object) → A ≅ A
|
||
idIso A = 𝟙 , (𝟙 , isIdentity)
|
||
|
||
-- Lemma 9.1.4 in [HoTT]
|
||
id-to-iso : (A B : Object) → A ≡ B → A ≅ B
|
||
id-to-iso A B eq = transp (\ i → A ≅ eq i) (idIso A)
|
||
|
||
Univalent : Set (ℓa ⊔ ℓb)
|
||
Univalent = {A B : Object} → isEquiv (A ≡ B) (A ≅ B) (id-to-iso A B)
|
||
|
||
-- | The mere proposition of being a category.
|
||
--
|
||
-- Also defines a few lemmas:
|
||
--
|
||
-- iso-is-epi : Isomorphism f → Epimorphism {X = X} f
|
||
-- iso-is-mono : Isomorphism f → Monomorphism {X = X} f
|
||
--
|
||
record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||
open RawCategory ℂ public
|
||
open Univalence ℂ public
|
||
field
|
||
isAssociative : IsAssociative
|
||
isIdentity : IsIdentity 𝟙
|
||
arrowsAreSets : ArrowsAreSets
|
||
univalent : Univalent isIdentity
|
||
|
||
-- Some common lemmas about categories.
|
||
module _ {A B : Object} {X : Object} (f : Arrow A B) where
|
||
iso-is-epi : Isomorphism f → Epimorphism {X = X} f
|
||
iso-is-epi (f- , left-inv , right-inv) g₀ g₁ eq = begin
|
||
g₀ ≡⟨ sym (fst isIdentity) ⟩
|
||
g₀ ∘ 𝟙 ≡⟨ cong (_∘_ g₀) (sym right-inv) ⟩
|
||
g₀ ∘ (f ∘ f-) ≡⟨ isAssociative ⟩
|
||
(g₀ ∘ f) ∘ f- ≡⟨ cong (λ φ → φ ∘ f-) eq ⟩
|
||
(g₁ ∘ f) ∘ f- ≡⟨ sym isAssociative ⟩
|
||
g₁ ∘ (f ∘ f-) ≡⟨ cong (_∘_ g₁) right-inv ⟩
|
||
g₁ ∘ 𝟙 ≡⟨ fst isIdentity ⟩
|
||
g₁ ∎
|
||
|
||
iso-is-mono : Isomorphism f → Monomorphism {X = X} f
|
||
iso-is-mono (f- , (left-inv , right-inv)) g₀ g₁ eq =
|
||
begin
|
||
g₀ ≡⟨ sym (snd isIdentity) ⟩
|
||
𝟙 ∘ g₀ ≡⟨ cong (λ φ → φ ∘ g₀) (sym left-inv) ⟩
|
||
(f- ∘ f) ∘ g₀ ≡⟨ sym isAssociative ⟩
|
||
f- ∘ (f ∘ g₀) ≡⟨ cong (_∘_ f-) eq ⟩
|
||
f- ∘ (f ∘ g₁) ≡⟨ isAssociative ⟩
|
||
(f- ∘ f) ∘ g₁ ≡⟨ cong (λ φ → φ ∘ g₁) left-inv ⟩
|
||
𝟙 ∘ g₁ ≡⟨ snd isIdentity ⟩
|
||
g₁ ∎
|
||
|
||
iso-is-epi-mono : Isomorphism f → Epimorphism {X = X} f × Monomorphism {X = X} f
|
||
iso-is-epi-mono iso = iso-is-epi iso , iso-is-mono iso
|
||
|
||
-- | Propositionality of being a category
|
||
--
|
||
-- Proves that all projections of `IsCategory` are mere propositions as well as
|
||
-- `IsCategory` itself being a mere proposition.
|
||
module Propositionality {ℓa ℓb : Level} {C : RawCategory ℓa ℓb} where
|
||
open RawCategory C
|
||
module _ (ℂ : IsCategory C) where
|
||
open IsCategory ℂ using (isAssociative ; arrowsAreSets ; isIdentity ; Univalent)
|
||
open import Cubical.NType
|
||
open import Cubical.NType.Properties
|
||
|
||
propIsAssociative : isProp IsAssociative
|
||
propIsAssociative x y i = arrowsAreSets _ _ x y i
|
||
|
||
propIsIdentity : ∀ {f : ∀ {A} → Arrow A A} → isProp (IsIdentity f)
|
||
propIsIdentity a b i
|
||
= arrowsAreSets _ _ (fst a) (fst b) i
|
||
, arrowsAreSets _ _ (snd a) (snd b) i
|
||
|
||
propArrowIsSet : isProp (∀ {A B} → isSet (Arrow A B))
|
||
propArrowIsSet a b i = isSetIsProp a b i
|
||
|
||
propIsInverseOf : ∀ {A B f g} → isProp (IsInverseOf {A} {B} f g)
|
||
propIsInverseOf x y = λ i →
|
||
let
|
||
h : fst x ≡ fst y
|
||
h = arrowsAreSets _ _ (fst x) (fst y)
|
||
hh : snd x ≡ snd y
|
||
hh = arrowsAreSets _ _ (snd x) (snd y)
|
||
in h i , hh i
|
||
|
||
module _ {A B : Object} {f : Arrow A B} where
|
||
isoIsProp : isProp (Isomorphism f)
|
||
isoIsProp a@(g , η , ε) a'@(g' , η' , ε') =
|
||
lemSig (λ g → propIsInverseOf) a a' geq
|
||
where
|
||
open Cubical.NType.Properties
|
||
geq : g ≡ g'
|
||
geq = begin
|
||
g ≡⟨ sym (fst isIdentity) ⟩
|
||
g ∘ 𝟙 ≡⟨ cong (λ φ → g ∘ φ) (sym ε') ⟩
|
||
g ∘ (f ∘ g') ≡⟨ isAssociative ⟩
|
||
(g ∘ f) ∘ g' ≡⟨ cong (λ φ → φ ∘ g') η ⟩
|
||
𝟙 ∘ g' ≡⟨ snd isIdentity ⟩
|
||
g' ∎
|
||
|
||
propUnivalent : isProp (Univalent isIdentity)
|
||
propUnivalent a b i = propPi (λ iso → propHasLevel ⟨-2⟩) a b i
|
||
|
||
private
|
||
module _ (x y : IsCategory C) where
|
||
module IC = IsCategory
|
||
module X = IsCategory x
|
||
module Y = IsCategory y
|
||
open Univalence C
|
||
-- In a few places I use the result of propositionality of the various
|
||
-- projections of `IsCategory` - I've arbitrarily chosed to use this
|
||
-- result from `x : IsCategory C`. I don't know which (if any) possibly
|
||
-- adverse effects this may have.
|
||
isIdentity : (λ _ → IsIdentity 𝟙) [ X.isIdentity ≡ Y.isIdentity ]
|
||
isIdentity = propIsIdentity x X.isIdentity Y.isIdentity
|
||
done : x ≡ y
|
||
U : ∀ {a : IsIdentity 𝟙}
|
||
→ (λ _ → IsIdentity 𝟙) [ X.isIdentity ≡ a ]
|
||
→ (b : Univalent a)
|
||
→ Set _
|
||
U eqwal bbb =
|
||
(λ i → Univalent (eqwal i))
|
||
[ X.univalent ≡ bbb ]
|
||
P : (y : IsIdentity 𝟙)
|
||
→ (λ _ → IsIdentity 𝟙) [ X.isIdentity ≡ y ] → Set _
|
||
P y eq = ∀ (b' : Univalent y) → U eq b'
|
||
helper : ∀ (b' : Univalent X.isIdentity)
|
||
→ (λ _ → Univalent X.isIdentity) [ X.univalent ≡ b' ]
|
||
helper univ = propUnivalent x X.univalent univ
|
||
foo = pathJ P helper Y.isIdentity isIdentity
|
||
eqUni : U isIdentity Y.univalent
|
||
eqUni = foo Y.univalent
|
||
IC.isAssociative (done i) = propIsAssociative x X.isAssociative Y.isAssociative i
|
||
IC.isIdentity (done i) = isIdentity i
|
||
IC.arrowsAreSets (done i) = propArrowIsSet x X.arrowsAreSets Y.arrowsAreSets i
|
||
IC.univalent (done i) = eqUni i
|
||
|
||
propIsCategory : isProp (IsCategory C)
|
||
propIsCategory = done
|
||
|
||
-- | Univalent categories
|
||
--
|
||
-- Just bundles up the data with witnesses inhabting the propositions.
|
||
record Category (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||
field
|
||
raw : RawCategory ℓa ℓb
|
||
{{isCategory}} : IsCategory raw
|
||
|
||
open IsCategory isCategory public
|
||
|
||
Category≡ : {ℓa ℓb : Level} {ℂ 𝔻 : Category ℓa ℓb} → Category.raw ℂ ≡ Category.raw 𝔻 → ℂ ≡ 𝔻
|
||
Category≡ {ℂ = ℂ} {𝔻} eq i = record
|
||
{ raw = eq i
|
||
; isCategory = isCategoryEq i
|
||
}
|
||
where
|
||
open Category
|
||
module ℂ = Category ℂ
|
||
isCategoryEq : (λ i → IsCategory (eq i)) [ isCategory ℂ ≡ isCategory 𝔻 ]
|
||
isCategoryEq = {!!}
|
||
|
||
-- | Syntax for arrows- and composition in a given category.
|
||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||
open Category ℂ
|
||
_[_,_] : (A : Object) → (B : Object) → Set ℓb
|
||
_[_,_] = Arrow
|
||
|
||
_[_∘_] : {A B C : Object} → (g : Arrow B C) → (f : Arrow A B) → Arrow A C
|
||
_[_∘_] = _∘_
|
||
|
||
-- | The opposite category
|
||
--
|
||
-- The opposite category is the category where the direction of the arrows are
|
||
-- flipped.
|
||
module Opposite {ℓa ℓb : Level} where
|
||
module _ (ℂ : Category ℓa ℓb) where
|
||
private
|
||
module ℂ = Category ℂ
|
||
opRaw : RawCategory ℓa ℓb
|
||
RawCategory.Object opRaw = ℂ.Object
|
||
RawCategory.Arrow opRaw = Function.flip ℂ.Arrow
|
||
RawCategory.𝟙 opRaw = ℂ.𝟙
|
||
RawCategory._∘_ opRaw = Function.flip ℂ._∘_
|
||
|
||
open RawCategory opRaw
|
||
open Univalence opRaw
|
||
|
||
isIdentity : IsIdentity 𝟙
|
||
isIdentity = swap ℂ.isIdentity
|
||
|
||
module _ {A B : ℂ.Object} where
|
||
univalent : isEquiv (A ≡ B) (A ≅ B)
|
||
(id-to-iso (swap ℂ.isIdentity) A B)
|
||
fst (univalent iso) = flipFiber (fst (ℂ.univalent (flipIso iso)))
|
||
where
|
||
flipIso : A ≅ B → B ℂ.≅ A
|
||
flipIso (f , f~ , iso) = f , f~ , swap iso
|
||
flipFiber
|
||
: fiber (ℂ.id-to-iso ℂ.isIdentity B A) (flipIso iso)
|
||
→ fiber ( id-to-iso isIdentity A B) iso
|
||
flipFiber (eq , eqIso) = sym eq , {!!}
|
||
snd (univalent iso) = {!!}
|
||
|
||
isCategory : IsCategory opRaw
|
||
IsCategory.isAssociative isCategory = sym ℂ.isAssociative
|
||
IsCategory.isIdentity isCategory = isIdentity
|
||
IsCategory.arrowsAreSets isCategory = ℂ.arrowsAreSets
|
||
IsCategory.univalent isCategory = univalent
|
||
|
||
opposite : Category ℓa ℓb
|
||
Category.raw opposite = opRaw
|
||
Category.isCategory opposite = isCategory
|
||
|
||
-- As demonstrated here a side-effect of having no-eta-equality on constructors
|
||
-- means that we need to pick things apart to show that things are indeed
|
||
-- definitionally equal. I.e; a thing that would normally be provable in one
|
||
-- line now takes 13!! Admittedly it's a simple proof.
|
||
module _ {ℂ : Category ℓa ℓb} where
|
||
open Category ℂ
|
||
private
|
||
-- Since they really are definitionally equal we just need to pick apart
|
||
-- the data-type.
|
||
rawInv : Category.raw (opposite (opposite ℂ)) ≡ raw
|
||
RawCategory.Object (rawInv _) = Object
|
||
RawCategory.Arrow (rawInv _) = Arrow
|
||
RawCategory.𝟙 (rawInv _) = 𝟙
|
||
RawCategory._∘_ (rawInv _) = _∘_
|
||
|
||
oppositeIsInvolution : opposite (opposite ℂ) ≡ ℂ
|
||
oppositeIsInvolution = Category≡ rawInv
|
||
|
||
open Opposite public
|