199 lines
6.3 KiB
Agda
199 lines
6.3 KiB
Agda
{-# OPTIONS --allow-unsolved-metas --cubical #-}
|
||
|
||
module Cat.Category where
|
||
|
||
open import Agda.Primitive
|
||
open import Data.Unit.Base
|
||
open import Data.Product renaming
|
||
( proj₁ to fst
|
||
; proj₂ to snd
|
||
; ∃! to ∃!≈
|
||
)
|
||
open import Data.Empty
|
||
import Function
|
||
open import Cubical hiding (isSet)
|
||
open import Cubical.GradLemma using ( propIsEquiv )
|
||
|
||
∃! : ∀ {a b} {A : Set a}
|
||
→ (A → Set b) → Set (a ⊔ b)
|
||
∃! = ∃!≈ _≡_
|
||
|
||
∃!-syntax : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b)
|
||
∃!-syntax = ∃
|
||
|
||
syntax ∃!-syntax (λ x → B) = ∃![ x ] B
|
||
|
||
IsSet : {ℓ : Level} (A : Set ℓ) → Set ℓ
|
||
IsSet A = {x y : A} → (p q : x ≡ y) → p ≡ q
|
||
|
||
record RawCategory (ℓ ℓ' : Level) : Set (lsuc (ℓ' ⊔ ℓ)) where
|
||
-- adding no-eta-equality can speed up type-checking.
|
||
-- ONLY IF you define your categories with copatterns though.
|
||
no-eta-equality
|
||
field
|
||
-- Need something like:
|
||
-- Object : Σ (Set ℓ) isGroupoid
|
||
Object : Set ℓ
|
||
-- And:
|
||
-- Arrow : Object → Object → Σ (Set ℓ') isSet
|
||
Arrow : Object → Object → Set ℓ'
|
||
𝟙 : {o : Object} → Arrow o o
|
||
_∘_ : {A B C : Object} → Arrow B C → Arrow A B → Arrow A C
|
||
infixl 10 _∘_
|
||
domain : { a b : Object } → Arrow a b → Object
|
||
domain {a = a} _ = a
|
||
codomain : { a b : Object } → Arrow a b → Object
|
||
codomain {b = b} _ = b
|
||
|
||
-- Thierry: All projections must be `isProp`'s
|
||
|
||
-- According to definitions 9.1.1 and 9.1.6 in the HoTT book the
|
||
-- arrows of a category form a set (arrow-is-set), and there is an
|
||
-- equivalence between the equality of objects and isomorphisms
|
||
-- (univalent).
|
||
record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||
open RawCategory ℂ
|
||
field
|
||
assoc : {A B C D : Object} { f : Arrow A B } { g : Arrow B C } { h : Arrow C D }
|
||
→ h ∘ (g ∘ f) ≡ (h ∘ g) ∘ f
|
||
ident : {A B : Object} {f : Arrow A B}
|
||
→ f ∘ 𝟙 ≡ f × 𝟙 ∘ f ≡ f
|
||
arrowIsSet : ∀ {A B : Object} → IsSet (Arrow A B)
|
||
|
||
Isomorphism : ∀ {A B} → (f : Arrow A B) → Set ℓb
|
||
Isomorphism {A} {B} f = Σ[ g ∈ Arrow B A ] g ∘ f ≡ 𝟙 × f ∘ g ≡ 𝟙
|
||
|
||
_≅_ : (A B : Object) → Set ℓb
|
||
_≅_ A B = Σ[ f ∈ Arrow A B ] (Isomorphism f)
|
||
|
||
idIso : (A : Object) → A ≅ A
|
||
idIso A = 𝟙 , (𝟙 , ident)
|
||
|
||
id-to-iso : (A B : Object) → A ≡ B → A ≅ B
|
||
id-to-iso A B eq = transp (\ i → A ≅ eq i) (idIso A)
|
||
|
||
-- TODO: might want to implement isEquiv differently, there are 3
|
||
-- equivalent formulations in the book.
|
||
Univalent : Set (ℓa ⊔ ℓb)
|
||
Univalent = {A B : Object} → isEquiv (A ≡ B) (A ≅ B) (id-to-iso A B)
|
||
field
|
||
univalent : Univalent
|
||
|
||
module _ {A B : Object} where
|
||
Epimorphism : {X : Object } → (f : Arrow A B) → Set ℓb
|
||
Epimorphism {X} f = ( g₀ g₁ : Arrow B X ) → g₀ ∘ f ≡ g₁ ∘ f → g₀ ≡ g₁
|
||
|
||
Monomorphism : {X : Object} → (f : Arrow A B) → Set ℓb
|
||
Monomorphism {X} f = ( g₀ g₁ : Arrow X A ) → f ∘ g₀ ≡ f ∘ g₁ → g₀ ≡ g₁
|
||
|
||
module _ {ℓa} {ℓb} {ℂ : RawCategory ℓa ℓb} where
|
||
-- TODO, provable by using arrow-is-set and that isProp (isEquiv _ _ _)
|
||
-- This lemma will be useful to prove the equality of two categories.
|
||
IsCategory-is-prop : isProp (IsCategory ℂ)
|
||
IsCategory-is-prop x y i = record
|
||
{ assoc = x.arrowIsSet x.assoc y.assoc i
|
||
; ident =
|
||
( x.arrowIsSet (fst x.ident) (fst y.ident) i
|
||
, x.arrowIsSet (snd x.ident) (snd y.ident) i
|
||
)
|
||
; arrowIsSet = λ p q →
|
||
let
|
||
golden : x.arrowIsSet p q ≡ y.arrowIsSet p q
|
||
golden = {!!}
|
||
in
|
||
golden i
|
||
; univalent = λ y₁ → {!!}
|
||
}
|
||
where
|
||
module x = IsCategory x
|
||
module y = IsCategory y
|
||
|
||
record Category (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||
field
|
||
raw : RawCategory ℓa ℓb
|
||
{{isCategory}} : IsCategory raw
|
||
|
||
private
|
||
module ℂ = RawCategory raw
|
||
|
||
Object : Set ℓa
|
||
Object = ℂ.Object
|
||
|
||
Arrow = ℂ.Arrow
|
||
|
||
𝟙 = ℂ.𝟙
|
||
|
||
_∘_ = ℂ._∘_
|
||
|
||
_[_,_] : (A : Object) → (B : Object) → Set ℓb
|
||
_[_,_] = ℂ.Arrow
|
||
|
||
_[_∘_] : {A B C : Object} → (g : ℂ.Arrow B C) → (f : ℂ.Arrow A B) → ℂ.Arrow A C
|
||
_[_∘_] = ℂ._∘_
|
||
|
||
|
||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||
private
|
||
open Category ℂ
|
||
|
||
OpRaw : RawCategory ℓa ℓb
|
||
RawCategory.Object OpRaw = Object
|
||
RawCategory.Arrow OpRaw = Function.flip Arrow
|
||
RawCategory.𝟙 OpRaw = 𝟙
|
||
RawCategory._∘_ OpRaw = Function.flip _∘_
|
||
|
||
open IsCategory isCategory
|
||
|
||
OpIsCategory : IsCategory OpRaw
|
||
IsCategory.assoc OpIsCategory = sym assoc
|
||
IsCategory.ident OpIsCategory = swap ident
|
||
IsCategory.arrowIsSet OpIsCategory = arrowIsSet
|
||
IsCategory.univalent OpIsCategory = {!!}
|
||
|
||
Opposite : Category ℓa ℓb
|
||
raw Opposite = OpRaw
|
||
Category.isCategory Opposite = OpIsCategory
|
||
|
||
-- As demonstrated here a side-effect of having no-eta-equality on constructors
|
||
-- means that we need to pick things apart to show that things are indeed
|
||
-- definitionally equal. I.e; a thing that would normally be provable in one
|
||
-- line now takes more than 20!!
|
||
module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
||
private
|
||
open RawCategory
|
||
module C = Category ℂ
|
||
rawOp : Category.raw (Opposite (Opposite ℂ)) ≡ Category.raw ℂ
|
||
Object (rawOp _) = C.Object
|
||
Arrow (rawOp _) = C.Arrow
|
||
𝟙 (rawOp _) = C.𝟙
|
||
_∘_ (rawOp _) = C._∘_
|
||
open Category
|
||
open IsCategory
|
||
module IsCat = IsCategory (ℂ .isCategory)
|
||
rawIsCat : (i : I) → IsCategory (rawOp i)
|
||
assoc (rawIsCat i) = IsCat.assoc
|
||
ident (rawIsCat i) = IsCat.ident
|
||
arrowIsSet (rawIsCat i) = IsCat.arrowIsSet
|
||
univalent (rawIsCat i) = IsCat.univalent
|
||
|
||
Opposite-is-involution : Opposite (Opposite ℂ) ≡ ℂ
|
||
raw (Opposite-is-involution i) = rawOp i
|
||
isCategory (Opposite-is-involution i) = rawIsCat i
|
||
|
||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||
open Category
|
||
unique = isContr
|
||
|
||
IsInitial : Object ℂ → Set (ℓa ⊔ ℓb)
|
||
IsInitial I = {X : Object ℂ} → unique (ℂ [ I , X ])
|
||
|
||
IsTerminal : Object ℂ → Set (ℓa ⊔ ℓb)
|
||
-- ∃![ ? ] ?
|
||
IsTerminal T = {X : Object ℂ} → unique (ℂ [ X , T ])
|
||
|
||
Initial : Set (ℓa ⊔ ℓb)
|
||
Initial = Σ (Object ℂ) IsInitial
|
||
|
||
Terminal : Set (ℓa ⊔ ℓb)
|
||
Terminal = Σ (Object ℂ) IsTerminal
|