cat/src/Cat/Category.agda

626 lines
23 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- | Univalent categories
--
-- This module defines:
--
-- Categories
-- ==========
--
-- Types
-- ------
--
-- Object, Arrow
--
-- Data
-- ----
-- identity; the identity arrow
-- _<<<_; function composition
--
-- Laws
-- ----
--
-- associativity, identity, arrows form sets, univalence.
--
-- Lemmas
-- ------
--
-- Propositionality for all laws about the category.
{-# OPTIONS --cubical #-}
module Cat.Category where
open import Cat.Prelude
import Cat.Equivalence
open Cat.Equivalence public using () renaming (Isomorphism to TypeIsomorphism)
open Cat.Equivalence
hiding (preorder≅ ; Isomorphism)
------------------
-- * Categories --
------------------
-- | Raw categories
--
-- This record desribes the data that a category consist of as well as some laws
-- about these. The laws defined are the types the propositions - not the
-- witnesses to them!
record RawCategory (a b : Level) : Set (lsuc (a b)) where
-- no-eta-equality
field
Object : Set a
Arrow : Object Object Set b
identity : {A : Object} Arrow A A
_<<<_ : {A B C : Object} Arrow B C Arrow A B Arrow A C
-- infixr 8 _<<<_
-- infixl 8 _>>>_
infixl 10 _<<<_ _>>>_
-- | Reverse arrow composition
_>>>_ : {A B C : Object} (Arrow A B) (Arrow B C) Arrow A C
f >>> g = g <<< f
-- | Laws about the data
-- FIXME It seems counter-intuitive that the normal-form is on the
-- right-hand-side.
IsAssociative : Set (a b)
IsAssociative = {A B C D} {f : Arrow A B} {g : Arrow B C} {h : Arrow C D}
h <<< (g <<< f) (h <<< g) <<< f
IsIdentity : ({A : Object} Arrow A A) Set (a b)
IsIdentity id = {A B : Object} {f : Arrow A B}
id <<< f f × f <<< id f
ArrowsAreSets : Set (a b)
ArrowsAreSets = {A B : Object} isSet (Arrow A B)
IsInverseOf : {A B} (Arrow A B) (Arrow B A) Set b
IsInverseOf = λ f g g <<< f identity × f <<< g identity
Isomorphism : {A B} (f : Arrow A B) Set b
Isomorphism {A} {B} f = Σ[ g Arrow B A ] IsInverseOf f g
_≊_ : (A B : Object) Set b
_≊_ A B = Σ[ f Arrow A B ] (Isomorphism f)
module _ {A B : Object} where
Epimorphism : (f : Arrow A B) Set _
Epimorphism f = {X} (g₀ g₁ : Arrow B X) g₀ <<< f g₁ <<< f g₀ g₁
Monomorphism : (f : Arrow A B) Set _
Monomorphism f = {X} (g₀ g₁ : Arrow X A) f <<< g₀ f <<< g₁ g₀ g₁
IsInitial : Object Set (a b)
IsInitial I = {X : Object} isContr (Arrow I X)
IsTerminal : Object Set (a b)
IsTerminal T = {X : Object} isContr (Arrow X T)
Initial : Set (a b)
Initial = Σ Object IsInitial
Terminal : Set (a b)
Terminal = Σ Object IsTerminal
-- | Univalence is indexed by a raw category as well as an identity proof.
module Univalence (isIdentity : IsIdentity identity) where
-- | The identity isomorphism
idIso : (A : Object) A A
idIso A = identity , identity , isIdentity
-- | Extract an isomorphism from an equality
--
-- [HoTT §9.1.4]
idToIso : (A B : Object) A B A B
idToIso A B eq = subst {P = λ X A X} eq (idIso A)
Univalent : Set (a b)
Univalent = {A B : Object} isEquiv (A B) (A B) (idToIso A B)
univalenceFromIsomorphism : {A B : Object}
TypeIsomorphism (idToIso A B) isEquiv (A B) (A B) (idToIso A B)
univalenceFromIsomorphism = fromIso _ _
-- A perhaps more readable version of univalence:
Univalent≃ = {A B : Object} (A B) (A B)
Univalent≅ = {A B : Object} (A B) (A B)
private
-- | Equivalent formulation of univalence.
Univalent[Contr] : Set _
Univalent[Contr] = A isContr (Σ[ X Object ] A X)
from[Contr] : Univalent[Contr] Univalent
from[Contr] = ContrToUniv.lemma _ _
where
open import Cubical.Fiberwise
univalenceFrom≃ : Univalent≃ Univalent
univalenceFrom≃ = from[Contr] step
where
module _ (f : Univalent≃) (A : Object) where
lem : Σ Object (A ≡_) Σ Object (A ≊_)
lem = equivSig λ _ f
aux : isContr (Σ Object (A ≡_))
aux = (A , refl) , (λ y contrSingl (snd y))
step : isContr (Σ Object (A ≊_))
step = equivPreservesNType {n = ⟨-2⟩} lem aux
univalenceFrom≅ : Univalent≅ Univalent
univalenceFrom≅ x = univalenceFrom≃ $ fromIsomorphism _ _ x
propUnivalent : isProp Univalent
propUnivalent a b i .equiv-proof = propPi (λ iso propIsContr) (a .equiv-proof) (b .equiv-proof) i
module _ {a b : Level} ( : RawCategory a b) where
record IsPreCategory : Set (lsuc (a b)) where
open RawCategory public
field
isAssociative : IsAssociative
isIdentity : IsIdentity identity
arrowsAreSets : ArrowsAreSets
open Univalence isIdentity public
leftIdentity : {A B : Object} {f : Arrow A B} identity <<< f f
leftIdentity {A} {B} {f} = fst (isIdentity {A = A} {B} {f})
rightIdentity : {A B : Object} {f : Arrow A B} f <<< identity f
rightIdentity {A} {B} {f} = snd (isIdentity {A = A} {B} {f})
------------
-- Lemmas --
------------
-- | Relation between iso- epi- and mono- morphisms.
module _ {A B : Object} {X : Object} (f : Arrow A B) where
iso→epi : Isomorphism f Epimorphism f
iso→epi (f- , left-inv , right-inv) g₀ g₁ eq = begin
g₀ ≡⟨ sym rightIdentity
g₀ <<< identity ≡⟨ cong (_<<<_ g₀) (sym right-inv)
g₀ <<< (f <<< f-) ≡⟨ isAssociative
(g₀ <<< f) <<< f- ≡⟨ cong (λ φ φ <<< f-) eq
(g₁ <<< f) <<< f- ≡⟨ sym isAssociative
g₁ <<< (f <<< f-) ≡⟨ cong (_<<<_ g₁) right-inv
g₁ <<< identity ≡⟨ rightIdentity
g₁
iso→mono : Isomorphism f Monomorphism f
iso→mono (f- , left-inv , right-inv) g₀ g₁ eq =
begin
g₀ ≡⟨ sym leftIdentity
identity <<< g₀ ≡⟨ cong (λ φ φ <<< g₀) (sym left-inv)
(f- <<< f) <<< g₀ ≡⟨ sym isAssociative
f- <<< (f <<< g₀) ≡⟨ cong (_<<<_ f-) eq
f- <<< (f <<< g₁) ≡⟨ isAssociative
(f- <<< f) <<< g₁ ≡⟨ cong (λ φ φ <<< g₁) left-inv
identity <<< g₁ ≡⟨ leftIdentity
g₁
iso→epi×mono : Isomorphism f Epimorphism f × Monomorphism f
iso→epi×mono iso = iso→epi iso , iso→mono iso
propIsAssociative : isProp IsAssociative
propIsAssociative = propPiImpl (λ _ propPiImpl (λ _ propPiImpl (λ _ propPiImpl (λ _ propPiImpl (λ _ propPiImpl (λ _ propPiImpl λ _ arrowsAreSets _ _))))))
propIsIdentity : {f : {A} Arrow A A} isProp (IsIdentity f)
propIsIdentity {id} = propPiImpl (λ _ propPiImpl λ _ propPiImpl (λ f
propSig (arrowsAreSets (id <<< f) f) λ _ arrowsAreSets (f <<< id) f))
propArrowIsSet : isProp ( {A B} isSet (Arrow A B))
propArrowIsSet = propPiImpl λ _ propPiImpl (λ _ isSetIsProp)
propIsInverseOf : {A B f g} isProp (IsInverseOf {A} {B} f g)
propIsInverseOf = propSig (arrowsAreSets _ _) (λ _ arrowsAreSets _ _)
module _ {A B : Object} where
propIsomorphism : (f : Arrow A B) isProp (Isomorphism f)
propIsomorphism f a@(g , η , ε) a'@(g' , η' , ε') =
lemSig (λ g propIsInverseOf) a a' geq
where
geq : g g'
geq = begin
g ≡⟨ sym rightIdentity
g <<< identity ≡⟨ cong (λ φ g <<< φ) (sym ε')
g <<< (f <<< g') ≡⟨ isAssociative
(g <<< f) <<< g' ≡⟨ cong (λ φ φ <<< g') η
identity <<< g' ≡⟨ leftIdentity
g'
isoEq : {a b : A B} fst a fst b a b
isoEq = lemSig propIsomorphism _ _
propIsInitial : I isProp (IsInitial I)
propIsInitial I x y i {X} = res X i
where
module _ (X : Object) where
open Σ (x {X}) renaming (fst to fx ; snd to cx)
open Σ (y {X}) renaming (fst to fy ; snd to cy)
fp : fx fy
fp = cx fy
prop : (x : Arrow I X) isProp ( f x f)
prop x = propPi (λ y arrowsAreSets x y)
cp : (λ i f fp i f) [ cx cy ]
cp = lemPropF prop fp
res : (fx , cx) (fy , cy)
res i = fp i , cp i
propIsTerminal : T isProp (IsTerminal T)
propIsTerminal T x y i {X} = res X i
where
module _ (X : Object) where
open Σ (x {X}) renaming (fst to fx ; snd to cx)
open Σ (y {X}) renaming (fst to fy ; snd to cy)
fp : fx fy
fp = cx fy
prop : (x : Arrow X T) isProp ( f x f)
prop x = propPi (λ y arrowsAreSets x y)
cp : (λ i f fp i f) [ cx cy ]
cp = lemPropF prop fp
res : (fx , cx) (fy , cy)
res i = fp i , cp i
module _ where
private
trans≊ : Transitive _≊_
trans≊ (f , f~ , f-inv) (g , g~ , g-inv)
= g <<< f
, f~ <<< g~
, ( begin
(f~ <<< g~) <<< (g <<< f) ≡⟨ isAssociative
(f~ <<< g~) <<< g <<< f ≡⟨ cong (λ φ φ <<< f) (sym isAssociative)
f~ <<< (g~ <<< g) <<< f ≡⟨ cong (λ φ f~ <<< φ <<< f) (fst g-inv)
f~ <<< identity <<< f ≡⟨ cong (λ φ φ <<< f) rightIdentity
f~ <<< f ≡⟨ fst f-inv
identity
)
, ( begin
g <<< f <<< (f~ <<< g~) ≡⟨ isAssociative
g <<< f <<< f~ <<< g~ ≡⟨ cong (λ φ φ <<< g~) (sym isAssociative)
g <<< (f <<< f~) <<< g~ ≡⟨ cong (λ φ g <<< φ <<< g~) (snd f-inv)
g <<< identity <<< g~ ≡⟨ cong (λ φ φ <<< g~) rightIdentity
g <<< g~ ≡⟨ snd g-inv
identity
)
isPreorder : IsPreorder _≊_
isPreorder = record { isEquivalence = equalityIsEquivalence ; reflexive = idToIso _ _ ; trans = trans≊ }
preorder≊ : Preorder _ _ _
preorder≊ = record { Carrier = Object ; _≈_ = _≡_ ; __ = _≊_ ; isPreorder = isPreorder }
record PreCategory : Set (lsuc (a b)) where
field
isPreCategory : IsPreCategory
open IsPreCategory isPreCategory public
-- Definition 9.6.1 in [HoTT]
record StrictCategory : Set (lsuc (a b)) where
field
preCategory : PreCategory
open PreCategory preCategory
field
objectsAreSets : isSet Object
record IsCategory : Set (lsuc (a b)) where
field
isPreCategory : IsPreCategory
open IsPreCategory isPreCategory public
field
univalent : Univalent
-- | The formulation of univalence expressed with _≃_ is trivially admissable -
-- just "forget" the equivalence.
univalent≃ : Univalent≃
univalent≃ = _ , univalent
module _ {A B : Object} where
private
iso : TypeIsomorphism (idToIso A B)
iso = toIso _ _ univalent
isoToId : (A B) (A B)
isoToId = fst iso
asTypeIso : TypeIsomorphism (idToIso A B)
asTypeIso = toIso _ _ univalent
-- FIXME Rename
inverse-from-to-iso' : AreInverses (idToIso A B) isoToId
inverse-from-to-iso' = snd iso
module _ {a b : Object} (f : Arrow a b) where
module _ {a' : Object} (p : a a') where
private
p~ : Arrow a' a
p~ = fst (snd (idToIso _ _ p))
D : a'' a a'' Set _
D a'' p' = coe (cong (λ x Arrow x b) p') f f <<< (fst (snd (idToIso _ _ p')))
9-1-9-left : coe (cong (λ x Arrow x b) p) f f <<< p~
9-1-9-left = pathJ D (begin
coe refl f ≡⟨ id-coe
f ≡⟨ sym rightIdentity
f <<< identity ≡⟨ cong (f <<<_) (sym subst-neutral)
f <<< _ ≡⟨⟩ _ ) a' p
module _ {b' : Object} (p : b b') where
private
p* : Arrow b b'
p* = fst (idToIso _ _ p)
D : b'' b b'' Set _
D b'' p' = coe (cong (λ x Arrow a x) p') f fst (idToIso _ _ p') <<< f
9-1-9-right : coe (cong (λ x Arrow a x) p) f p* <<< f
9-1-9-right = pathJ D (begin
coe refl f ≡⟨ id-coe
f ≡⟨ sym leftIdentity
identity <<< f ≡⟨ cong (_<<< f) (sym subst-neutral)
_ <<< f ) b' p
-- lemma 9.1.9 in hott
module _ {a a' b b' : Object}
(p : a a') (q : b b') (f : Arrow a b)
where
private
q* : Arrow b b'
q* = fst (idToIso _ _ q)
q~ : Arrow b' b
q~ = fst (snd (idToIso _ _ q))
p* : Arrow a a'
p* = fst (idToIso _ _ p)
p~ : Arrow a' a
p~ = fst (snd (idToIso _ _ p))
pq : Arrow a b Arrow a' b'
pq i = Arrow (p i) (q i)
U : b'' b b'' Set _
U b'' q' = coe (λ i Arrow a (q' i)) f fst (idToIso _ _ q') <<< f <<< (fst (snd (idToIso _ _ refl)))
u : coe (λ i Arrow a b) f fst (idToIso _ _ refl) <<< f <<< (fst (snd (idToIso _ _ refl)))
u = begin
coe refl f ≡⟨ id-coe
f ≡⟨ sym leftIdentity
identity <<< f ≡⟨ sym rightIdentity
identity <<< f <<< identity ≡⟨ cong (λ φ identity <<< f <<< φ) lem
identity <<< f <<< (fst (snd (idToIso _ _ refl))) ≡⟨ cong (λ φ φ <<< f <<< (fst (snd (idToIso _ _ refl)))) lem
fst (idToIso _ _ refl) <<< f <<< (fst (snd (idToIso _ _ refl)))
where
lem : {x} PathP (λ _ Arrow x x) identity (fst (idToIso x x refl))
lem = sym subst-neutral
D : a'' a a'' Set _
D a'' p' = coe (λ i Arrow (p' i) (q i)) f fst (idToIso b b' q) <<< f <<< (fst (snd (idToIso _ _ p')))
d : coe (λ i Arrow a (q i)) f fst (idToIso b b' q) <<< f <<< (fst (snd (idToIso _ _ refl)))
d = pathJ U u b' q
9-1-9 : coe pq f q* <<< f <<< p~
9-1-9 = pathJ D d a' p
9-1-9' : coe pq f <<< p* q* <<< f
9-1-9' = begin
coe pq f <<< p* ≡⟨ cong (_<<< p*) 9-1-9
q* <<< f <<< p~ <<< p* ≡⟨ sym isAssociative
q* <<< f <<< (p~ <<< p*) ≡⟨ cong (λ φ q* <<< f <<< φ) lem
q* <<< f <<< identity ≡⟨ rightIdentity
q* <<< f
where
lem : p~ <<< p* identity
lem = fst (snd (snd (idToIso _ _ p)))
module _ {A B X : Object} (iso : A B) where
private
p : A B
p = isoToId iso
p-dom : Arrow A X Arrow B X
p-dom = cong (λ x Arrow x X) p
p-cod : Arrow X A Arrow X B
p-cod = cong (λ x Arrow X x) p
lem : {A B} {x : A B} idToIso A B (isoToId x) x
lem {x = x} i = snd inverse-from-to-iso' i x
open Σ iso renaming (fst to ι) using ()
open Σ (snd iso) renaming (fst to ι~ ; snd to inv)
coe-dom : {f : Arrow A X} coe p-dom f f <<< ι~
coe-dom {f} = begin
coe p-dom f ≡⟨ 9-1-9-left f p
f <<< fst (snd (idToIso _ _ (isoToId iso))) ≡⟨⟩
f <<< fst (snd (idToIso _ _ p)) ≡⟨ cong (f <<<_) (cong (fst snd) lem)
f <<< ι~
coe-cod : {f : Arrow X A} coe p-cod f ι <<< f
coe-cod {f} = begin
coe p-cod f
≡⟨ 9-1-9-right f p
fst (idToIso _ _ p) <<< f
≡⟨ cong (λ φ φ <<< f) (cong fst lem)
ι <<< f
module _ {f : Arrow A X} {g : Arrow B X} (q : PathP (λ i p-dom i) f g) where
domain-twist : g f <<< ι~
domain-twist = begin
g ≡⟨ sym (coe-lem q)
coe p-dom f ≡⟨ coe-dom
f <<< ι~
-- This can probably also just be obtained from the above my taking the
-- symmetric isomorphism.
domain-twist-sym : f g <<< ι
domain-twist-sym = begin
f ≡⟨ sym rightIdentity
f <<< identity ≡⟨ cong (f <<<_) (sym (fst inv))
f <<< (ι~ <<< ι) ≡⟨ isAssociative
f <<< ι~ <<< ι ≡⟨ cong (_<<< ι) (sym domain-twist)
g <<< ι
-- | All projections are propositions.
module Propositionality where
-- | Terminal objects are propositional - a.k.a uniqueness of terminal
-- | objects.
--
-- Having two terminal objects induces an isomorphism between them - and
-- because of univalence this is equivalent to equality.
propTerminal : isProp Terminal
propTerminal Xt Yt = res
where
open Σ Xt renaming (fst to X ; snd to Xit)
open Σ Yt renaming (fst to Y ; snd to Yit)
open Σ (Xit {Y}) renaming (fst to Y→X) using ()
open Σ (Yit {X}) renaming (fst to X→Y) using ()
-- Need to show `left` and `right`, what we know is that the arrows are
-- unique. Well, I know that if I compose these two arrows they must give
-- the identity, since also the identity is the unique such arrow (by X
-- and Y both being terminal objects.)
Xprop : isProp (Arrow X X)
Xprop f g = trans (sym (snd Xit f)) (snd Xit g)
Yprop : isProp (Arrow Y Y)
Yprop f g = trans (sym (snd Yit f)) (snd Yit g)
left : Y→X <<< X→Y identity
left = Xprop _ _
right : X→Y <<< Y→X identity
right = Yprop _ _
iso : X Y
iso = X→Y , Y→X , left , right
p0 : X Y
p0 = isoToId iso
p1 : (λ i IsTerminal (p0 i)) [ Xit Yit ]
p1 = lemPropF propIsTerminal p0
res : Xt Yt
res i = p0 i , p1 i
-- Merely the dual of the above statement.
propInitial : isProp Initial
propInitial Xi Yi = res
where
open Σ Xi renaming (fst to X ; snd to Xii)
open Σ Yi renaming (fst to Y ; snd to Yii)
open Σ (Xii {Y}) renaming (fst to Y→X) using ()
open Σ (Yii {X}) renaming (fst to X→Y) using ()
-- Need to show `left` and `right`, what we know is that the arrows are
-- unique. Well, I know that if I compose these two arrows they must give
-- the identity, since also the identity is the unique such arrow (by X
-- and Y both being terminal objects.)
Xprop : isProp (Arrow X X)
Xprop f g = trans (sym (snd Xii f)) (snd Xii g)
Yprop : isProp (Arrow Y Y)
Yprop f g = trans (sym (snd Yii f)) (snd Yii g)
left : Y→X <<< X→Y identity
left = Yprop _ _
right : X→Y <<< Y→X identity
right = Xprop _ _
iso : X Y
iso = Y→X , X→Y , right , left
res : Xi Yi
res = lemSig propIsInitial _ _ (isoToId iso)
groupoidObject : isGrpd Object
groupoidObject A B = res
where
open import Data.Nat using (_≤_ ; ≤′-refl ; ≤′-step)
setIso : x isSet (Isomorphism x)
setIso x = ntypeCumulative {n = 1} (≤′-step ≤′-refl) (propIsomorphism x)
step : isSet (A B)
step = setSig {sA = arrowsAreSets} {sB = setIso}
res : isSet (A B)
res = equivPreservesNType
{A = A B} {B = A B} {n = ⟨0⟩}
(Equivalence.symmetry (univalent≃ {A = A} {B}))
step
module _ {a b : Level} ( : RawCategory a b) where
open RawCategory
open Univalence
private
module _ (x y : IsPreCategory ) where
module x = IsPreCategory x
module y = IsPreCategory y
-- In a few places I use the result of propositionality of the various
-- projections of `IsCategory` - Here I arbitrarily chose to use this
-- result from `x : IsCategory C`. I don't know which (if any) possibly
-- adverse effects this may have.
-- module Prop = X.Propositionality
propIsPreCategory : x y
IsPreCategory.isAssociative (propIsPreCategory i)
= x.propIsAssociative x.isAssociative y.isAssociative i
IsPreCategory.isIdentity (propIsPreCategory i)
= x.propIsIdentity x.isIdentity y.isIdentity i
IsPreCategory.arrowsAreSets (propIsPreCategory i)
= x.propArrowIsSet x.arrowsAreSets y.arrowsAreSets i
module _ (x y : IsCategory ) where
module X = IsCategory x
module Y = IsCategory y
-- In a few places I use the result of propositionality of the various
-- projections of `IsCategory` - Here I arbitrarily chose to use this
-- result from `x : IsCategory C`. I don't know which (if any) possibly
-- adverse effects this may have.
isIdentity= : (λ _ IsIdentity identity) [ X.isIdentity Y.isIdentity ]
isIdentity= = X.propIsIdentity X.isIdentity Y.isIdentity
isPreCategory= : X.isPreCategory Y.isPreCategory
isPreCategory= = propIsPreCategory X.isPreCategory Y.isPreCategory
private
p = cong IsPreCategory.isIdentity isPreCategory=
univalent= : (λ i Univalent (p i))
[ X.univalent Y.univalent ]
univalent= = lemPropF
{A = IsIdentity identity}
{B = Univalent}
propUnivalent
{a0 = X.isIdentity}
{a1 = Y.isIdentity}
p
done : x y
IsCategory.isPreCategory (done i) = isPreCategory= i
IsCategory.univalent (done i) = univalent= i
propIsCategory : isProp (IsCategory )
propIsCategory = done
-- | Univalent categories
--
-- Just bundles up the data with witnesses inhabiting the propositions.
-- Question: Should I remove the type `Category`?
record Category (a b : Level) : Set (lsuc (a b)) where
field
raw : RawCategory a b
{{isCategory}} : IsCategory raw
open IsCategory isCategory public
-- The fact that being a category is a mere proposition gives rise to this
-- equality principle for categories.
module _ {a b : Level} { 𝔻 : Category a b} where
private
module = Category
module 𝔻 = Category 𝔻
module _ (rawEq : .raw 𝔻.raw) where
private
isCategoryEq : (λ i IsCategory (rawEq i)) [ .isCategory 𝔻.isCategory ]
isCategoryEq = lemPropF {A = RawCategory _ _} {B = IsCategory} propIsCategory rawEq
Category≡ : 𝔻
Category.raw (Category≡ i) = rawEq i
Category.isCategory (Category≡ i) = isCategoryEq i
-- | Syntax for arrows- and composition in a given category.
module _ {a b : Level} ( : Category a b) where
open Category
_[_,_] : (A : Object) (B : Object) Set b
_[_,_] = Arrow
_[_∘_] : {A B C : Object} (g : Arrow B C) (f : Arrow A B) Arrow A C
_[_∘_] = _<<<_