cat/src/Cat/Category/Monad.agda

334 lines
12 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --cubical --allow-unsolved-metas #-}
module Cat.Category.Monad where
open import Agda.Primitive
open import Data.Product
open import Cubical
open import Cat.Category
open import Cat.Category.Functor as F
open import Cat.Category.NaturalTransformation
open import Cat.Categories.Fun
-- "A monad in the monoidal form" [voe]
module Monoidal {a b : Level} ( : Category a b) where
private
= a b
open Category using (Object ; Arrow ; 𝟙 ; _∘_)
open NaturalTransformation
record RawMonad : Set where
field
-- R ~ m
R : Functor
-- η ~ pure
ηNat : NaturalTransformation F.identity R
-- μ ~ join
μNat : NaturalTransformation F[ R R ] R
η : Transformation F.identity R
η = proj₁ ηNat
μ : Transformation F[ R R ] R
μ = proj₁ μNat
private
module R = Functor R
module RR = Functor F[ R R ]
module _ {X : Object} where
IsAssociative' : Set _
IsAssociative' = μ X R.func→ (μ X) μ X μ (R.func* X)
IsInverse' : Set _
IsInverse'
= μ X η (R.func* X) 𝟙
× μ X R.func→ (η X) 𝟙
-- We don't want the objects to be indexes of the type, but rather just
-- universally quantify over *all* objects of the category.
IsAssociative = {X : Object} IsAssociative' {X}
IsInverse = {X : Object} IsInverse' {X}
record IsMonad (raw : RawMonad) : Set where
open RawMonad raw public
field
isAssociative : IsAssociative
isInverse : IsInverse
record Monad : Set where
field
raw : RawMonad
isMonad : IsMonad raw
open IsMonad isMonad public
postulate propIsMonad : {raw} isProp (IsMonad raw)
Monad≡ : {m n : Monad} Monad.raw m Monad.raw n m n
Monad.raw (Monad≡ eq i) = eq i
Monad.isMonad (Monad≡ {m} {n} eq i) = res i
where
-- TODO: PathJ nightmare + `propIsMonad`.
res : (λ i IsMonad (eq i)) [ Monad.isMonad m Monad.isMonad n ]
res = {!!}
-- "A monad in the Kleisli form" [voe]
module Kleisli {a b : Level} ( : Category a b) where
private
= a b
open Category using (Arrow ; 𝟙 ; Object ; _∘_)
record RawMonad : Set where
field
RR : Object Object
-- Note name-change from [voe]
ζ : {X : Object} [ X , RR X ]
rr : {X Y : Object} [ X , RR Y ] [ RR X , RR Y ]
-- Note the correspondance with Haskell:
--
-- RR ~ m
-- ζ ~ pure
-- rr ~ flip (>>=)
--
-- Where those things have these types:
--
-- m : 𝓤𝓤
-- pure : x → m x
-- flip (>>=) :: (a → m b) → m a → m b
--
pure : {X : Object} [ X , RR X ]
pure = ζ
fmap : {A B} [ A , B ] [ RR A , RR B ]
fmap f = rr (ζ f)
-- Why is (>>=) not implementable?
--
-- (>>=) : m a -> (a -> m b) -> m b
-- (>=>) : (a -> m b) -> (b -> m c) -> a -> m c
_>=>_ : {A B C : Object} [ A , RR B ] [ B , RR C ] [ A , RR C ]
f >=> g = rr g f
-- fmap id ≡ id
IsIdentity = {X : Object}
rr ζ 𝟙 {RR X}
IsNatural = {X Y : Object} (f : [ X , RR Y ])
rr f ζ f
IsDistributive = {X Y Z : Object} (g : [ Y , RR Z ]) (f : [ X , RR Y ])
rr g rr f rr (rr g f)
Fusion = {X Y Z : Object} {g : [ Y , Z ]} {f : [ X , Y ]}
fmap (g f) fmap g fmap f
record IsMonad (raw : RawMonad) : Set where
open RawMonad raw public
field
isIdentity : IsIdentity
isNatural : IsNatural
isDistributive : IsDistributive
fusion : Fusion
fusion {g = g} {f} = begin
fmap (g f) ≡⟨⟩
rr (ζ (g f)) ≡⟨ {!!}
rr (rr (ζ g) (ζ f)) ≡⟨ sym lem
rr (ζ g) rr (ζ f) ≡⟨⟩
fmap g fmap f
where
lem : rr (ζ g) rr (ζ f) rr (rr (ζ g) (ζ f))
lem = isDistributive (ζ g) (ζ f)
record Monad : Set where
field
raw : RawMonad
isMonad : IsMonad raw
open IsMonad isMonad public
postulate propIsMonad : {raw} isProp (IsMonad raw)
Monad≡ : {m n : Monad} Monad.raw m Monad.raw n m n
Monad.raw (Monad≡ eq i) = eq i
Monad.isMonad (Monad≡ {m} {n} eq i) = res i
where
-- TODO: PathJ nightmare + `propIsMonad`.
res : (λ i IsMonad (eq i)) [ Monad.isMonad m Monad.isMonad n ]
res = {!!}
-- Problem 2.3
module _ {a b : Level} { : Category a b} where
private
open Category using (Object ; Arrow ; 𝟙 ; _∘_)
open Functor using (func* ; func→)
module M = Monoidal
module K = Kleisli
-- Note similarity with locally defined things in Kleisly.RawMonad!!
module _ (m : M.RawMonad) where
private
open M.RawMonad m
module Kraw = K.RawMonad
RR : Object Object
RR = func* R
ζ : {X : Object} [ X , RR X ]
ζ {X} = η X
rr : {X Y : Object} [ X , RR Y ] [ RR X , RR Y ]
rr {X} {Y} f = μ Y func→ R f
forthRaw : K.RawMonad
Kraw.RR forthRaw = RR
Kraw.ζ forthRaw = ζ
Kraw.rr forthRaw = rr
module _ {raw : M.RawMonad} (m : M.IsMonad raw) where
private
open M.IsMonad m
open K.RawMonad (forthRaw raw)
module Kis = K.IsMonad
isIdentity : IsIdentity
isIdentity {X} = begin
rr ζ ≡⟨⟩
rr (η X) ≡⟨⟩
μ X func→ R (η X) ≡⟨ proj₂ isInverse
𝟙
module R = Functor R
isNatural : IsNatural
isNatural {X} {Y} f = begin
rr f ζ ≡⟨⟩
rr f η X ≡⟨⟩
μ Y R.func→ f η X ≡⟨ sym .isAssociative
μ Y (R.func→ f η X) ≡⟨ cong (λ φ μ Y φ) (sym (ηN f))
μ Y (η (R.func* Y) f) ≡⟨ .isAssociative
μ Y η (R.func* Y) f ≡⟨ cong (λ φ φ f) (proj₁ isInverse)
𝟙 f ≡⟨ proj₂ .isIdentity
f
where
open NaturalTransformation
module = Category
ηN : Natural F.identity R η
ηN = proj₂ ηNat
isDistributive : IsDistributive
isDistributive {X} {Y} {Z} g f = begin
rr g rr f ≡⟨⟩
μ Z R.func→ g (μ Y R.func→ f) ≡⟨ sym lem2
μ Z R.func→ (μ Z R.func→ g f) ≡⟨⟩
μ Z R.func→ (rr g f)
where
-- Proved it in reverse here... otherwise it could be neatly inlined.
lem2
: μ Z R.func→ (μ Z R.func→ g f)
μ Z R.func→ g (μ Y R.func→ f)
lem2 = begin
μ Z R.func→ (μ Z R.func→ g f) ≡⟨ cong (λ φ μ Z φ) distrib
μ Z (R.func→ (μ Z) R.func→ (R.func→ g) R.func→ f) ≡⟨⟩
μ Z (R.func→ (μ Z) RR.func→ g R.func→ f) ≡⟨ {!!} -- ●-solver?
(μ Z R.func→ (μ Z)) (RR.func→ g R.func→ f) ≡⟨ cong (λ φ φ (RR.func→ g R.func→ f)) lemmm
(μ Z μ (R.func* Z)) (RR.func→ g R.func→ f) ≡⟨ {!!} -- ●-solver?
μ Z μ (R.func* Z) RR.func→ g R.func→ f ≡⟨ {!!} -- ●-solver + lem4
μ Z R.func→ g μ Y R.func→ f ≡⟨ sym (Category.isAssociative )
μ Z R.func→ g (μ Y R.func→ f)
where
module RR = Functor F[ R R ]
distrib : {A B C D} {a : Arrow C D} {b : Arrow B C} {c : Arrow A B}
R.func→ (a b c)
R.func→ a R.func→ b R.func→ c
distrib = {!!}
comm : {A B C D E}
{a : Arrow D E} {b : Arrow C D} {c : Arrow B C} {d : Arrow A B}
a (b c d) a b c d
comm = {!!}
μN = proj₂ μNat
lemmm : μ Z R.func→ (μ Z) μ Z μ (R.func* Z)
lemmm = isAssociative
lem4 : μ (R.func* Z) RR.func→ g R.func→ g μ Y
lem4 = μN g
forthIsMonad : K.IsMonad (forthRaw raw)
Kis.isIdentity forthIsMonad = isIdentity
Kis.isNatural forthIsMonad = isNatural
Kis.isDistributive forthIsMonad = isDistributive
forth : M.Monad K.Monad
Kleisli.Monad.raw (forth m) = forthRaw (M.Monad.raw m)
Kleisli.Monad.isMonad (forth m) = forthIsMonad (M.Monad.isMonad m)
module _ (m : K.Monad) where
private
module = Category
open K.Monad m
module Mraw = M.RawMonad
open NaturalTransformation
rawR : RawFunctor
RawFunctor.func* rawR = RR
RawFunctor.func→ rawR f = rr (ζ f)
isFunctorR : IsFunctor rawR
IsFunctor.isIdentity isFunctorR = begin
rr (ζ 𝟙) ≡⟨ cong rr (proj₁ .isIdentity)
rr ζ ≡⟨ isIdentity
𝟙
IsFunctor.isDistributive isFunctorR {f = f} {g} = begin
rr (ζ (g f)) ≡⟨⟩
fmap (g f) ≡⟨ fusion
fmap g fmap f ≡⟨⟩
rr (ζ g) rr (ζ f)
R : Functor
Functor.raw R = rawR
Functor.isFunctor R = isFunctorR
R2 : Functor
R2 = F[ R R ]
ηNat : NaturalTransformation F.identity R
ηNat = {!!}
μNat : NaturalTransformation R2 R
μNat = {!!}
backRaw : M.RawMonad
Mraw.R backRaw = R
Mraw.ηNat backRaw = ηNat
Mraw.μNat backRaw = μNat
module _ (m : K.Monad) where
open K.Monad m
open M.RawMonad (backRaw m)
module Mis = M.IsMonad
backIsMonad : M.IsMonad (backRaw m)
backIsMonad = {!!}
back : K.Monad M.Monad
Monoidal.Monad.raw (back m) = backRaw m
Monoidal.Monad.isMonad (back m) = backIsMonad m
-- I believe all the proofs here should be `refl`.
module _ (m : K.Monad) where
open K.RawMonad (K.Monad.raw m)
forthRawEq : forthRaw (backRaw m) K.Monad.raw m
K.RawMonad.RR (forthRawEq _) = RR
K.RawMonad.ζ (forthRawEq _) = ζ
-- stuck
K.RawMonad.rr (forthRawEq i) = {!!}
fortheq : (m : K.Monad) forth (back m) m
fortheq m = K.Monad≡ (forthRawEq m)
module _ (m : M.Monad) where
open M.RawMonad (M.Monad.raw m)
backRawEq : backRaw (forth m) M.Monad.raw m
-- stuck
M.RawMonad.R (backRawEq i) = {!!}
M.RawMonad.ηNat (backRawEq i) = {!!}
M.RawMonad.μNat (backRawEq i) = {!!}
backeq : (m : M.Monad) back (forth m) m
backeq m = M.Monad≡ (backRawEq m)
open import Cubical.GradLemma
eqv : isEquiv M.Monad K.Monad forth
eqv = gradLemma forth back fortheq backeq
Monoidal≃Kleisli : M.Monad K.Monad
Monoidal≃Kleisli = forth , eqv