cat/src/Cat/Categories/Cat.agda

327 lines
12 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- There is no category of categories in our interpretation
{-# OPTIONS --cubical --allow-unsolved-metas #-}
module Cat.Categories.Cat where
open import Cat.Prelude renaming (proj₁ to fst ; proj₂ to snd)
open import Cat.Category
open import Cat.Category.Functor
open import Cat.Category.Product
open import Cat.Category.Exponential hiding (_×_ ; product)
open import Cat.Category.NaturalTransformation
open import Cat.Categories.Fun
-- The category of categories
module _ ( ' : Level) where
private
module _ {𝔸 𝔹 𝔻 : Category '} {F : Functor 𝔸 𝔹} {G : Functor 𝔹 } {H : Functor 𝔻} where
assc : F[ H F[ G F ] ] F[ F[ H G ] F ]
assc = Functor≡ refl
module _ { 𝔻 : Category '} {F : Functor 𝔻} where
ident-r : F[ F identity ] F
ident-r = Functor≡ refl
ident-l : F[ identity F ] F
ident-l = Functor≡ refl
RawCat : RawCategory (lsuc ( ')) ( ')
RawCategory.Object RawCat = Category '
RawCategory.Arrow RawCat = Functor
RawCategory.𝟙 RawCat = identity
RawCategory._∘_ RawCat = F[_∘_]
private
open RawCategory RawCat
isAssociative : IsAssociative
isAssociative {f = F} {G} {H} = assc {F = F} {G = G} {H = H}
isIdentity : IsIdentity identity
isIdentity = ident-l , ident-r
-- NB! `ArrowsAreSets RawCat` is *not* provable. The type of functors,
-- however, form a groupoid! Therefore there is no (1-)category of
-- categories. There does, however, exist a 2-category of 1-categories.
--
-- Because of this there is no category of categories.
Cat : (unprovable : IsCategory RawCat) Category (lsuc ( ')) ( ')
Category.raw (Cat _) = RawCat
Category.isCategory (Cat unprovable) = unprovable
-- | In the following we will pretend there is a category of categories when
-- e.g. talking about it being cartesian closed. It still makes sense to
-- construct these things even though that category does not exist.
--
-- If the notion of a category is later generalized to work on different
-- homotopy levels, then the proof that the category of categories is cartesian
-- closed will follow immediately from these constructions.
-- | the category of categories have products.
module CatProduct { ' : Level} ( 𝔻 : Category ') where
private
module = Category
module 𝔻 = Category 𝔻
module _ where
private
Obj = .Object × 𝔻.Object
Arr : Obj Obj Set '
Arr (c , d) (c' , d') = [ c , c' ] × 𝔻 [ d , d' ]
𝟙 : {o : Obj} Arr o o
𝟙 = .𝟙 , 𝔻.𝟙
_∘_ :
{a b c : Obj}
Arr b c
Arr a b
Arr a c
_∘_ = λ { (bc∈C , bc∈D) (ab∈C , ab∈D) [ bc∈C ab∈C ] , 𝔻 [ bc∈D ab∈D ]}
rawProduct : RawCategory '
RawCategory.Object rawProduct = Obj
RawCategory.Arrow rawProduct = Arr
RawCategory.𝟙 rawProduct = 𝟙
RawCategory._∘_ rawProduct = _∘_
open RawCategory rawProduct
arrowsAreSets : ArrowsAreSets
arrowsAreSets = setSig {sA = .arrowsAreSets} {sB = λ x 𝔻.arrowsAreSets}
isIdentity : IsIdentity 𝟙
isIdentity
= Σ≡ (fst .isIdentity) (fst 𝔻.isIdentity)
, Σ≡ (snd .isIdentity) (snd 𝔻.isIdentity)
postulate univalent : Univalence.Univalent isIdentity
instance
isCategory : IsCategory rawProduct
IsCategory.isAssociative isCategory = Σ≡ .isAssociative 𝔻.isAssociative
IsCategory.isIdentity isCategory = isIdentity
IsCategory.arrowsAreSets isCategory = arrowsAreSets
IsCategory.univalent isCategory = univalent
object : Category '
Category.raw object = rawProduct
proj₁ : Functor object
proj₁ = record
{ raw = record
{ omap = fst ; fmap = fst }
; isFunctor = record
{ isIdentity = refl ; isDistributive = refl }
}
proj₂ : Functor object 𝔻
proj₂ = record
{ raw = record
{ omap = snd ; fmap = snd }
; isFunctor = record
{ isIdentity = refl ; isDistributive = refl }
}
module _ {X : Category '} (x₁ : Functor X ) (x₂ : Functor X 𝔻) where
private
x : Functor X object
x = record
{ raw = record
{ omap = λ x x₁.omap x , x₂.omap x
; fmap = λ x x₁.fmap x , x₂.fmap x
}
; isFunctor = record
{ isIdentity = Σ≡ x₁.isIdentity x₂.isIdentity
; isDistributive = Σ≡ x₁.isDistributive x₂.isDistributive
}
}
where
open module x = Functor x₁
open module x = Functor x₂
isUniqL : F[ proj₁ x ] x₁
isUniqL = Functor≡ refl
isUniqR : F[ proj₂ x ] x₂
isUniqR = Functor≡ refl
isUniq : F[ proj₁ x ] x₁ × F[ proj₂ x ] x₂
isUniq = isUniqL , isUniqR
isProduct : ∃![ x ] (F[ proj₁ x ] x₁ × F[ proj₂ x ] x₂)
isProduct = x , isUniq
module _ { ' : Level} (unprovable : IsCategory (RawCat ')) where
private
Cat = Cat ' unprovable
module _ ( 𝔻 : Category ') where
private
module P = CatProduct 𝔻
rawProduct : RawProduct Cat 𝔻
RawProduct.object rawProduct = P.object
RawProduct.proj₁ rawProduct = P.proj₁
RawProduct.proj₂ rawProduct = P.proj₂
isProduct : IsProduct Cat _ _ rawProduct
IsProduct.ump isProduct = P.isProduct
product : Product Cat 𝔻
Product.raw product = rawProduct
Product.isProduct product = isProduct
instance
hasProducts : HasProducts Cat
hasProducts = record { product = product }
-- | The category of categories have expoentntials - and because it has products
-- it is therefory also cartesian closed.
module CatExponential { : Level} ( 𝔻 : Category ) where
private
module = Category
module 𝔻 = Category 𝔻
Category = Category
open Fun 𝔻 renaming (identity to idN)
omap : Functor 𝔻 × .Object 𝔻.Object
omap (F , A) = Functor.omap F A
-- The exponential object
object : Category
object = Fun
module _ {dom cod : Functor 𝔻 × .Object} where
open Σ dom renaming (proj₁ to F ; proj₂ to A)
open Σ cod renaming (proj₁ to G ; proj₂ to B)
private
module F = Functor F
module G = Functor G
fmap : (pobj : NaturalTransformation F G × [ A , B ])
𝔻 [ F.omap A , G.omap B ]
fmap ((θ , θNat) , f) = 𝔻 [ θ B F.fmap f ]
-- Alternatively:
--
-- fmap ((θ , θNat) , f) = 𝔻 [ G.fmap f ∘ θ A ]
--
-- Since they are equal by naturality of θ.
open CatProduct renaming (object to _⊗_) using ()
module _ {c : Functor 𝔻 × .Object} where
open Σ c renaming (proj₁ to F ; proj₂ to C)
ident : fmap {c} {c} (NT.identity F , .𝟙 {A = snd c}) 𝔻.𝟙
ident = begin
fmap {c} {c} (Category.𝟙 (object ) {c}) ≡⟨⟩
fmap {c} {c} (idN F , .𝟙) ≡⟨⟩
𝔻 [ identityTrans F C F.fmap .𝟙 ] ≡⟨⟩
𝔻 [ 𝔻.𝟙 F.fmap .𝟙 ] ≡⟨ 𝔻.leftIdentity
F.fmap .𝟙 ≡⟨ F.isIdentity
𝔻.𝟙
where
module F = Functor F
module _ {F×A G×B H×C : Functor 𝔻 × .Object} where
open Σ F×A renaming (proj₁ to F ; proj₂ to A)
open Σ G×B renaming (proj₁ to G ; proj₂ to B)
open Σ H×C renaming (proj₁ to H ; proj₂ to C)
private
module F = Functor F
module G = Functor G
module H = Functor H
module _
{θ×f : NaturalTransformation F G × [ A , B ]}
{η×g : NaturalTransformation G H × [ B , C ]} where
open Σ θ×f renaming (proj₁ to θNT ; proj₂ to f)
open Σ θNT renaming (proj₁ to θ ; proj₂ to θNat)
open Σ η×g renaming (proj₁ to ηNT ; proj₂ to g)
open Σ ηNT renaming (proj₁ to η ; proj₂ to ηNat)
private
ηθNT : NaturalTransformation F H
ηθNT = NT[_∘_] {F} {G} {H} ηNT θNT
open Σ ηθNT renaming (proj₁ to ηθ ; proj₂ to ηθNat)
isDistributive :
𝔻 [ 𝔻 [ η C θ C ] F.fmap ( [ g f ] ) ]
𝔻 [ 𝔻 [ η C G.fmap g ] 𝔻 [ θ B F.fmap f ] ]
isDistributive = begin
𝔻 [ (ηθ C) F.fmap ( [ g f ]) ]
≡⟨ ηθNat ( [ g f ])
𝔻 [ H.fmap ( [ g f ]) (ηθ A) ]
≡⟨ cong (λ φ 𝔻 [ φ ηθ A ]) (H.isDistributive)
𝔻 [ 𝔻 [ H.fmap g H.fmap f ] (ηθ A) ]
≡⟨ sym 𝔻.isAssociative
𝔻 [ H.fmap g 𝔻 [ H.fmap f ηθ A ] ]
≡⟨ cong (λ φ 𝔻 [ H.fmap g φ ]) 𝔻.isAssociative
𝔻 [ H.fmap g 𝔻 [ 𝔻 [ H.fmap f η A ] θ A ] ]
≡⟨ cong (λ φ 𝔻 [ H.fmap g φ ]) (cong (λ φ 𝔻 [ φ θ A ]) (sym (ηNat f)))
𝔻 [ H.fmap g 𝔻 [ 𝔻 [ η B G.fmap f ] θ A ] ]
≡⟨ cong (λ φ 𝔻 [ H.fmap g φ ]) (sym 𝔻.isAssociative)
𝔻 [ H.fmap g 𝔻 [ η B 𝔻 [ G.fmap f θ A ] ] ]
≡⟨ 𝔻.isAssociative
𝔻 [ 𝔻 [ H.fmap g η B ] 𝔻 [ G.fmap f θ A ] ]
≡⟨ cong (λ φ 𝔻 [ φ 𝔻 [ G.fmap f θ A ] ]) (sym (ηNat g))
𝔻 [ 𝔻 [ η C G.fmap g ] 𝔻 [ G.fmap f θ A ] ]
≡⟨ cong (λ φ 𝔻 [ 𝔻 [ η C G.fmap g ] φ ]) (sym (θNat f))
𝔻 [ 𝔻 [ η C G.fmap g ] 𝔻 [ θ B F.fmap f ] ]
eval : Functor (CatProduct.object object ) 𝔻
eval = record
{ raw = record
{ omap = omap
; fmap = λ {dom} {cod} fmap {dom} {cod}
}
; isFunctor = record
{ isIdentity = λ {o} ident {o}
; isDistributive = λ {f u n k y} isDistributive {f} {u} {n} {k} {y}
}
}
module _ (𝔸 : Category ) (F : Functor (𝔸 ) 𝔻) where
postulate
parallelProduct
: Functor 𝔸 object Functor
Functor (𝔸 ) (object )
transpose : Functor 𝔸 object
eq : F[ eval (parallelProduct transpose (identity {C = })) ] F
-- eq : F[ :eval: ∘ {!!} ] ≡ F
-- eq : Cat [ :eval: ∘ (HasProducts._|×|_ hasProducts transpose (𝟙 Cat {o = })) ] ≡ F
-- eq' : (Cat [ :eval: ∘
-- (record { product = product } HasProducts.|×| transpose)
-- (𝟙 Cat)
-- ])
-- ≡ F
-- For some reason after `e8215b2c051062c6301abc9b3f6ec67106259758`
-- `catTranspose` makes Agda hang. catTranspose : ∃![ F~ ] (Cat [
-- :eval: (parallelProduct F~ (𝟙 Cat {o = }))] F) catTranspose =
-- transpose , eq
-- We don't care about filling out the holes below since they are anyways hidden
-- behind an unprovable statement.
module _ ( : Level) (unprovable : IsCategory (RawCat )) where
private
Cat : Category (lsuc ( )) ( )
Cat = Cat unprovable
module _ ( 𝔻 : Category ) where
module CatExp = CatExponential 𝔻
_⊗_ = CatProduct.object
-- Filling the hole causes Agda to loop indefinitely.
eval : Functor (CatExp.object ) 𝔻
eval = {!CatExp.eval!}
isExponential : IsExponential Cat 𝔻 CatExp.object eval
isExponential = {!CatExp.isExponential!}
exponent : Exponential Cat 𝔻
exponent = record
{ obj = CatExp.object
; eval = eval
; isExponential = isExponential
}
hasExponentials : HasExponentials Cat
hasExponentials = record { exponent = exponent }