12 lines
437 B
Agda
12 lines
437 B
Agda
module Cat.Wishlist where
|
||
|
||
open import Level
|
||
open import Cubical.NType
|
||
open import Data.Nat using (_≤_ ; z≤n ; s≤s)
|
||
|
||
postulate ntypeCommulative : ∀ {ℓ n m} {A : Set ℓ} → n ≤ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A
|
||
|
||
-- This follows from [HoTT-book: §7.1.10]
|
||
-- Andrea says the proof is in `cubical` but I can't find it.
|
||
postulate isSetIsProp : {ℓ : Level} → {A : Set ℓ} → isProp (isSet A)
|