253 lines
8.6 KiB
Agda
253 lines
8.6 KiB
Agda
{-# OPTIONS --allow-unsolved-metas --cubical #-}
|
||
|
||
module Cat.Category where
|
||
|
||
open import Agda.Primitive
|
||
open import Data.Unit.Base
|
||
open import Data.Product renaming
|
||
( proj₁ to fst
|
||
; proj₂ to snd
|
||
; ∃! to ∃!≈
|
||
)
|
||
open import Data.Empty
|
||
import Function
|
||
open import Cubical
|
||
open import Cubical.NType.Properties using ( propIsEquiv )
|
||
|
||
open import Cat.Wishlist
|
||
|
||
∃! : ∀ {a b} {A : Set a}
|
||
→ (A → Set b) → Set (a ⊔ b)
|
||
∃! = ∃!≈ _≡_
|
||
|
||
∃!-syntax : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b)
|
||
∃!-syntax = ∃
|
||
|
||
syntax ∃!-syntax (λ x → B) = ∃![ x ] B
|
||
|
||
record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||
no-eta-equality
|
||
field
|
||
Object : Set ℓa
|
||
Arrow : Object → Object → Set ℓb
|
||
𝟙 : {A : Object} → Arrow A A
|
||
_∘_ : {A B C : Object} → Arrow B C → Arrow A B → Arrow A C
|
||
|
||
infixl 10 _∘_
|
||
|
||
domain : { a b : Object } → Arrow a b → Object
|
||
domain {a = a} _ = a
|
||
|
||
codomain : { a b : Object } → Arrow a b → Object
|
||
codomain {b = b} _ = b
|
||
|
||
IsAssociative : Set (ℓa ⊔ ℓb)
|
||
IsAssociative = ∀ {A B C D} {f : Arrow A B} {g : Arrow B C} {h : Arrow C D}
|
||
→ h ∘ (g ∘ f) ≡ (h ∘ g) ∘ f
|
||
|
||
IsIdentity : ({A : Object} → Arrow A A) → Set (ℓa ⊔ ℓb)
|
||
IsIdentity id = {A B : Object} {f : Arrow A B}
|
||
→ f ∘ id ≡ f × id ∘ f ≡ f
|
||
|
||
ArrowsAreSets : Set (ℓa ⊔ ℓb)
|
||
ArrowsAreSets = ∀ {A B : Object} → isSet (Arrow A B)
|
||
|
||
IsInverseOf : ∀ {A B} → (Arrow A B) → (Arrow B A) → Set ℓb
|
||
IsInverseOf = λ f g → g ∘ f ≡ 𝟙 × f ∘ g ≡ 𝟙
|
||
|
||
Isomorphism : ∀ {A B} → (f : Arrow A B) → Set ℓb
|
||
Isomorphism {A} {B} f = Σ[ g ∈ Arrow B A ] IsInverseOf f g
|
||
|
||
_≅_ : (A B : Object) → Set ℓb
|
||
_≅_ A B = Σ[ f ∈ Arrow A B ] (Isomorphism f)
|
||
|
||
module _ {A B : Object} where
|
||
Epimorphism : {X : Object } → (f : Arrow A B) → Set ℓb
|
||
Epimorphism {X} f = ( g₀ g₁ : Arrow B X ) → g₀ ∘ f ≡ g₁ ∘ f → g₀ ≡ g₁
|
||
|
||
Monomorphism : {X : Object} → (f : Arrow A B) → Set ℓb
|
||
Monomorphism {X} f = ( g₀ g₁ : Arrow X A ) → f ∘ g₀ ≡ f ∘ g₁ → g₀ ≡ g₁
|
||
|
||
IsInitial : Object → Set (ℓa ⊔ ℓb)
|
||
IsInitial I = {X : Object} → isContr (Arrow I X)
|
||
|
||
IsTerminal : Object → Set (ℓa ⊔ ℓb)
|
||
IsTerminal T = {X : Object} → isContr (Arrow X T)
|
||
|
||
Initial : Set (ℓa ⊔ ℓb)
|
||
Initial = Σ Object IsInitial
|
||
|
||
Terminal : Set (ℓa ⊔ ℓb)
|
||
Terminal = Σ Object IsTerminal
|
||
|
||
-- Univalence is indexed by a raw category as well as an identity proof.
|
||
module Univalence {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
||
open RawCategory ℂ
|
||
module _ (ident : IsIdentity 𝟙) where
|
||
idIso : (A : Object) → A ≅ A
|
||
idIso A = 𝟙 , (𝟙 , ident)
|
||
|
||
-- Lemma 9.1.4 in [HoTT]
|
||
id-to-iso : (A B : Object) → A ≡ B → A ≅ B
|
||
id-to-iso A B eq = transp (\ i → A ≅ eq i) (idIso A)
|
||
|
||
-- TODO: might want to implement isEquiv
|
||
-- differently, there are 3
|
||
-- equivalent formulations in the book.
|
||
Univalent : Set (ℓa ⊔ ℓb)
|
||
Univalent = {A B : Object} → isEquiv (A ≡ B) (A ≅ B) (id-to-iso A B)
|
||
|
||
record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||
open RawCategory ℂ
|
||
open Univalence ℂ public
|
||
field
|
||
assoc : IsAssociative
|
||
ident : IsIdentity 𝟙
|
||
arrowIsSet : ArrowsAreSets
|
||
univalent : Univalent ident
|
||
|
||
-- `IsCategory` is a mere proposition.
|
||
module _ {ℓa ℓb : Level} {C : RawCategory ℓa ℓb} where
|
||
open RawCategory C
|
||
module _ (ℂ : IsCategory C) where
|
||
open IsCategory ℂ
|
||
open import Cubical.NType
|
||
open import Cubical.NType.Properties
|
||
|
||
propIsAssociative : isProp IsAssociative
|
||
propIsAssociative x y i = arrowIsSet _ _ x y i
|
||
|
||
propIsIdentity : ∀ {f : ∀ {A} → Arrow A A} → isProp (IsIdentity f)
|
||
propIsIdentity a b i
|
||
= arrowIsSet _ _ (fst a) (fst b) i
|
||
, arrowIsSet _ _ (snd a) (snd b) i
|
||
|
||
propArrowIsSet : isProp (∀ {A B} → isSet (Arrow A B))
|
||
propArrowIsSet a b i = isSetIsProp a b i
|
||
|
||
propIsInverseOf : ∀ {A B f g} → isProp (IsInverseOf {A} {B} f g)
|
||
propIsInverseOf x y = λ i →
|
||
let
|
||
h : fst x ≡ fst y
|
||
h = arrowIsSet _ _ (fst x) (fst y)
|
||
hh : snd x ≡ snd y
|
||
hh = arrowIsSet _ _ (snd x) (snd y)
|
||
in h i , hh i
|
||
|
||
module _ {A B : Object} {f : Arrow A B} where
|
||
isoIsProp : isProp (Isomorphism f)
|
||
isoIsProp a@(g , η , ε) a'@(g' , η' , ε') =
|
||
lemSig (λ g → propIsInverseOf) a a' geq
|
||
where
|
||
open Cubical.NType.Properties
|
||
geq : g ≡ g'
|
||
geq = begin
|
||
g ≡⟨ sym (fst ident) ⟩
|
||
g ∘ 𝟙 ≡⟨ cong (λ φ → g ∘ φ) (sym ε') ⟩
|
||
g ∘ (f ∘ g') ≡⟨ assoc ⟩
|
||
(g ∘ f) ∘ g' ≡⟨ cong (λ φ → φ ∘ g') η ⟩
|
||
𝟙 ∘ g' ≡⟨ snd ident ⟩
|
||
g' ∎
|
||
|
||
propUnivalent : isProp (Univalent ident)
|
||
propUnivalent a b i = propPi (λ iso → propHasLevel ⟨-2⟩) a b i
|
||
|
||
private
|
||
module _ (x y : IsCategory C) where
|
||
module IC = IsCategory
|
||
module X = IsCategory x
|
||
module Y = IsCategory y
|
||
open Univalence C
|
||
-- In a few places I use the result of propositionality of the various
|
||
-- projections of `IsCategory` - I've arbitrarily chosed to use this
|
||
-- result from `x : IsCategory C`. I don't know which (if any) possibly
|
||
-- adverse effects this may have.
|
||
ident : (λ _ → IsIdentity 𝟙) [ X.ident ≡ Y.ident ]
|
||
ident = propIsIdentity x X.ident Y.ident
|
||
done : x ≡ y
|
||
U : ∀ {a : IsIdentity 𝟙}
|
||
→ (λ _ → IsIdentity 𝟙) [ X.ident ≡ a ]
|
||
→ (b : Univalent a)
|
||
→ Set _
|
||
U eqwal bbb =
|
||
(λ i → Univalent (eqwal i))
|
||
[ X.univalent ≡ bbb ]
|
||
P : (y : IsIdentity 𝟙)
|
||
→ (λ _ → IsIdentity 𝟙) [ X.ident ≡ y ] → Set _
|
||
P y eq = ∀ (b' : Univalent y) → U eq b'
|
||
helper : ∀ (b' : Univalent X.ident)
|
||
→ (λ _ → Univalent X.ident) [ X.univalent ≡ b' ]
|
||
helper univ = propUnivalent x X.univalent univ
|
||
foo = pathJ P helper Y.ident ident
|
||
eqUni : U ident Y.univalent
|
||
eqUni = foo Y.univalent
|
||
IC.assoc (done i) = propIsAssociative x X.assoc Y.assoc i
|
||
IC.ident (done i) = ident i
|
||
IC.arrowIsSet (done i) = propArrowIsSet x X.arrowIsSet Y.arrowIsSet i
|
||
IC.univalent (done i) = eqUni i
|
||
|
||
propIsCategory : isProp (IsCategory C)
|
||
propIsCategory = done
|
||
|
||
record Category (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||
field
|
||
raw : RawCategory ℓa ℓb
|
||
{{isCategory}} : IsCategory raw
|
||
|
||
open RawCategory raw public
|
||
open IsCategory isCategory public
|
||
|
||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||
open Category ℂ
|
||
_[_,_] : (A : Object) → (B : Object) → Set ℓb
|
||
_[_,_] = Arrow
|
||
|
||
_[_∘_] : {A B C : Object} → (g : Arrow B C) → (f : Arrow A B) → Arrow A C
|
||
_[_∘_] = _∘_
|
||
|
||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||
private
|
||
open Category ℂ
|
||
|
||
OpRaw : RawCategory ℓa ℓb
|
||
RawCategory.Object OpRaw = Object
|
||
RawCategory.Arrow OpRaw = Function.flip Arrow
|
||
RawCategory.𝟙 OpRaw = 𝟙
|
||
RawCategory._∘_ OpRaw = Function.flip _∘_
|
||
|
||
OpIsCategory : IsCategory OpRaw
|
||
IsCategory.assoc OpIsCategory = sym assoc
|
||
IsCategory.ident OpIsCategory = swap ident
|
||
IsCategory.arrowIsSet OpIsCategory = arrowIsSet
|
||
IsCategory.univalent OpIsCategory = {!!}
|
||
|
||
Opposite : Category ℓa ℓb
|
||
raw Opposite = OpRaw
|
||
Category.isCategory Opposite = OpIsCategory
|
||
|
||
-- As demonstrated here a side-effect of having no-eta-equality on constructors
|
||
-- means that we need to pick things apart to show that things are indeed
|
||
-- definitionally equal. I.e; a thing that would normally be provable in one
|
||
-- line now takes more than 20!!
|
||
module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
||
private
|
||
open RawCategory
|
||
module C = Category ℂ
|
||
rawOp : Category.raw (Opposite (Opposite ℂ)) ≡ Category.raw ℂ
|
||
Object (rawOp _) = C.Object
|
||
Arrow (rawOp _) = C.Arrow
|
||
𝟙 (rawOp _) = C.𝟙
|
||
_∘_ (rawOp _) = C._∘_
|
||
open Category
|
||
open IsCategory
|
||
module IsCat = IsCategory (ℂ .isCategory)
|
||
rawIsCat : (i : I) → IsCategory (rawOp i)
|
||
assoc (rawIsCat i) = IsCat.assoc
|
||
ident (rawIsCat i) = IsCat.ident
|
||
arrowIsSet (rawIsCat i) = IsCat.arrowIsSet
|
||
univalent (rawIsCat i) = IsCat.univalent
|
||
|
||
Opposite-is-involution : Opposite (Opposite ℂ) ≡ ℂ
|
||
raw (Opposite-is-involution i) = rawOp i
|
||
isCategory (Opposite-is-involution i) = rawIsCat i
|