cat/src/Cat/Equivalence.agda

270 lines
9 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --allow-unsolved-metas --cubical #-}
module Cat.Equivalence where
open import Cubical.Primitives
open import Cubical.FromStdLib renaming (-max to _⊔_)
open import Cubical.PathPrelude hiding (inverse ; _≃_)
open import Cubical.PathPrelude using (isEquiv ; isContr ; fiber) public
open import Cubical.GradLemma
module _ {a b : Level} where
private
= a b
module _ {A : Set a} {B : Set b} where
-- Quasi-inverse in [HoTT] §2.4.6
-- FIXME Maybe rename?
record AreInverses (f : A B) (g : B A) : Set where
field
verso-recto : g f idFun A
recto-verso : f g idFun B
obverse = f
reverse = g
inverse = reverse
toPair : Σ _ _
toPair = verso-recto , recto-verso
Isomorphism : (f : A B) Set _
Isomorphism f = Σ (B A) λ g AreInverses f g
module _ {f : A B} {g : B A}
(inv : (g f) idFun A
× (f g) idFun B) where
open Σ inv renaming (fst to ve-re ; snd to re-ve)
toAreInverses : AreInverses f g
toAreInverses = record
{ verso-recto = ve-re
; recto-verso = re-ve
}
_≅_ : Set a Set b Set _
A B = Σ (A B) Isomorphism
module _ { : Level} {A B : Set } {f : A B}
(g : B A) (s : {A B : Set } isSet (A B)) where
propAreInverses : isProp (AreInverses {A = A} {B} f g)
propAreInverses x y i = record
{ verso-recto = ve-re
; recto-verso = re-ve
}
where
open AreInverses
ve-re : g f idFun A
ve-re = s (g f) (idFun A) (verso-recto x) (verso-recto y) i
re-ve : f g idFun B
re-ve = s (f g) (idFun B) (recto-verso x) (recto-verso y) i
-- In HoTT they generalize an equivalence to have the following 3 properties:
module _ {a b : Level} (A : Set a) (B : Set b) where
record Equiv (iseqv : (A B) Set ) : Set (a b ) where
field
fromIso : {f : A B} Isomorphism f iseqv f
toIso : {f : A B} iseqv f Isomorphism f
propIsEquiv : (f : A B) isProp (iseqv f)
-- You're alerady assuming here that we don't need eta-equality on the
-- equivalence!
_~_ : Set a Set b Set _
A ~ B = Σ _ iseqv
inverse-from-to-iso : {f} (x : _) (fromIso {f} toIso {f}) x x
inverse-from-to-iso x = begin
(fromIso toIso) x ≡⟨⟩
fromIso (toIso x) ≡⟨ propIsEquiv _ (fromIso (toIso x)) x
x
-- `toIso` is abstract - so I probably can't close this proof.
-- inverse-to-from-iso : ∀ {f} → toIso {f} ∘ fromIso {f} ≡ idFun _
-- inverse-to-from-iso = funExt (λ x → begin
-- (toIso ∘ fromIso) x ≡⟨⟩
-- toIso (fromIso x) ≡⟨ cong toIso (propIsEquiv _ (fromIso x) y) ⟩
-- toIso y ≡⟨ {!!} ⟩
-- x ∎)
-- where
-- y : iseqv _
-- y = {!!}
fromIsomorphism : A B A ~ B
fromIsomorphism (f , iso) = f , fromIso iso
toIsomorphism : A ~ B A B
toIsomorphism (f , eqv) = f , toIso eqv
module _ {a b : Level} (A : Set a) (B : Set b) where
-- A wrapper around PathPrelude.≃
open Cubical.PathPrelude using (_≃_ ; isEquiv)
private
module _ {obverse : A B} (e : isEquiv A B obverse) where
inverse : B A
inverse b = fst (fst (e b))
reverse : B A
reverse = inverse
areInverses : AreInverses obverse inverse
areInverses = record
{ verso-recto = funExt verso-recto
; recto-verso = funExt recto-verso
}
where
recto-verso : b (obverse inverse) b b
recto-verso b = begin
(obverse inverse) b ≡⟨ sym (μ b)
b
where
μ : (b : B) b obverse (inverse b)
μ b = snd (fst (e b))
verso-recto : a (inverse obverse) a a
verso-recto a = begin
(inverse obverse) a ≡⟨ sym h
a' ≡⟨ u'
a
where
c : isContr (fiber obverse (obverse a))
c = e (obverse a)
fbr : fiber obverse (obverse a)
fbr = fst c
a' : A
a' = fst fbr
allC : (y : fiber obverse (obverse a)) fbr y
allC = snd c
k : fbr (inverse (obverse a), _)
k = allC (inverse (obverse a) , sym (recto-verso (obverse a)))
h : a' inverse (obverse a)
h i = fst (k i)
u : fbr (a , refl)
u = allC (a , refl)
u' : a' a
u' i = fst (u i)
iso : Isomorphism obverse
iso = reverse , areInverses
toIsomorphism : {f : A B} isEquiv A B f Isomorphism f
toIsomorphism = iso
≃isEquiv : Equiv A B (isEquiv A B)
Equiv.fromIso ≃isEquiv {f} (f~ , iso) = gradLemma f f~ rv vr
where
open AreInverses iso
rv : (b : B) _ b
rv b i = recto-verso i b
vr : (a : A) _ a
vr a i = verso-recto i a
Equiv.toIso ≃isEquiv = toIsomorphism
Equiv.propIsEquiv ≃isEquiv = P.propIsEquiv
where
import Cubical.NType.Properties as P
module Equiv where
open Equiv ≃isEquiv public
inverse-to-from-iso : {f} (x : _) (toIso {f} fromIso {f}) x x
inverse-to-from-iso {f} x = begin
(toIso fromIso) x ≡⟨⟩
toIso (fromIso x) ≡⟨ cong toIso (propIsEquiv _ (fromIso x) y)
toIso y ≡⟨ py
x
where
helper : (x : Isomorphism _) Σ _ λ y toIso y x
helper (f~ , inv) = y , py
where
module inv = AreInverses inv
y : isEquiv _ _ f
y = {!!}
py : toIso y (f~ , inv)
py = {!!}
y : isEquiv _ _ _
y = fst (helper x)
py = snd (helper x)
module _ {a b : Level} {A : Set a} {B : Set b} where
open Cubical.PathPrelude using (_≃_)
-- Gives the quasi inverse from an equivalence.
module Equivalence (e : A B) where
open Equiv≃ A B public
private
iso : Isomorphism (fst e)
iso = snd (toIsomorphism e)
open AreInverses (snd iso) public
composeIso : {c : Level} {C : Set c} (B C) A C
composeIso {C = C} (g , g' , iso-g) = g obverse , inverse g' , inv
where
module iso-g = AreInverses iso-g
inv : AreInverses (g obverse) (inverse g')
AreInverses.verso-recto inv = begin
(inverse g') (g obverse) ≡⟨⟩
(inverse (g' g) obverse)
≡⟨ cong (λ φ φ obverse) (cong (λ φ inverse φ) iso-g.verso-recto)
(inverse idFun B obverse) ≡⟨⟩
(inverse obverse) ≡⟨ verso-recto
idFun A
AreInverses.recto-verso inv = begin
g obverse inverse g'
≡⟨ cong (λ φ φ g') (cong (λ φ g φ) recto-verso)
g idFun B g' ≡⟨⟩
g g' ≡⟨ iso-g.recto-verso
idFun C
compose : {c : Level} {C : Set c} (B C) A C
compose {C = C} e = A≃C.fromIsomorphism is
where
module B≃C = Equiv≃ B C
module A≃C = Equiv≃ A C
is : A C
is = composeIso (B≃C.toIsomorphism e)
symmetryIso : B A
symmetryIso
= inverse
, obverse
, record
{ verso-recto = recto-verso
; recto-verso = verso-recto
}
symmetry : B A
symmetry = B≃A.fromIsomorphism symmetryIso
where
module B≃A = Equiv≃ B A
module _ {a b : Level} {A : Set a} {B : Set b} where
open import Cubical.PathPrelude renaming (_≃_ to _≃η_)
open import Cubical.Univalence using (_≃_)
doEta : A B A ≃η B
doEta (_≃_.con eqv isEqv) = eqv , isEqv
deEta : A ≃η B A B
deEta (eqv , isEqv) = _≃_.con eqv isEqv
module NoEta {a b : Level} {A : Set a} {B : Set b} where
open import Cubical.PathPrelude renaming (_≃_ to _≃η_)
open import Cubical.Univalence using (_≃_)
module Equivalence (e : A B) where
open Equivalence (doEta e) hiding
( toIsomorphism ; fromIsomorphism ; _~_
; compose ; symmetryIso ; symmetry ) public
compose : {c : Level} {C : Set c} (B C) A C
compose ee = deEta (Equivalence.compose (doEta e) (doEta ee))
symmetry : B A
symmetry = deEta (Equivalence.symmetry (doEta e))
-- fromIso : {f : A → B} → Isomorphism f → isEquiv f
-- fromIso = ?
-- toIso : {f : A → B} → isEquiv f → Isomorphism f
-- toIso = ?
fromIsomorphism : A B A B
fromIsomorphism (f , iso) = _≃_.con f (Equiv≃.fromIso _ _ iso)
toIsomorphism : A B A B
toIsomorphism (_≃_.con f eqv) = f , Equiv≃.toIso _ _ eqv