192 lines
6.7 KiB
Agda
192 lines
6.7 KiB
Agda
{-# OPTIONS --cubical #-}
|
||
module Category.Rel where
|
||
|
||
open import Data.Product
|
||
open import Cubical.PathPrelude
|
||
open import Cubical.GradLemma
|
||
open import Agda.Primitive
|
||
open import Category
|
||
|
||
-- Sets are built-in to Agda. The set of all small sets is called Set.
|
||
|
||
Fun : {ℓ : Level} → ( T U : Set ℓ ) → Set ℓ
|
||
Fun T U = T → U
|
||
|
||
𝕊et-as-Cat : {ℓ : Level} → Category {lsuc ℓ} {ℓ}
|
||
𝕊et-as-Cat {ℓ} = record
|
||
{ Object = Set ℓ
|
||
; Arrow = λ T U → Fun {ℓ} T U
|
||
; 𝟙 = λ x → x
|
||
; _⊕_ = λ g f x → g ( f x )
|
||
; assoc = refl
|
||
; ident = funExt (λ x → refl) , funExt (λ x → refl)
|
||
}
|
||
|
||
-- Subsets are predicates over some type.
|
||
Subset : {ℓ : Level} → ( A : Set ℓ ) → Set (ℓ ⊔ lsuc lzero)
|
||
Subset A = A → Set
|
||
-- Subset : {ℓ ℓ' : Level} → ( A : Set ℓ ) → Set (ℓ ⊔ lsuc ℓ')
|
||
-- Subset {ℓ' = ℓ'} A = A → Set ℓ'
|
||
-- {a ∈ A | P a}
|
||
|
||
-- subset-syntax : {ℓ ℓ' : Level} → (A : Set ℓ) → (P : A → Set ℓ') → ( a : A ) → Set ℓ'
|
||
-- subset-syntax A P a = P a
|
||
-- infix 2 subset-syntax
|
||
|
||
-- syntax subset P a = << a ∈ A >>>
|
||
-- syntax subset P = ⦃ a ∈ A | P a ⦄
|
||
-- syntax subset-syntax A (λ a → B) = ⟨ a foo A ∣ B ⟩
|
||
|
||
-- Membership is function applicatiom.
|
||
_∈_ : {ℓ : Level} {A : Set ℓ} → A → Subset A → Set
|
||
s ∈ S = S s
|
||
|
||
infixl 45 _∈_
|
||
|
||
-- The diagnoal of a set is a synonym for equality.
|
||
Diag : ∀ S → Subset (S × S)
|
||
Diag S (s₀ , s₁) = s₀ ≡ s₁
|
||
-- Diag S = subset (S × S) (λ {(p , q) → p ≡ q})
|
||
-- Diag S = ⟨ ? foo ? ∣ ? ⟩
|
||
-- Diag S (s₀ , s₁) = ⦃ (s₀ , s₁) ∈ S | s₀ ≡ s₁ ⦄
|
||
|
||
module _ {A B : Set} {S : Subset (A × B)} (ab : A × B) where
|
||
private
|
||
a : A
|
||
a = fst ab
|
||
b : B
|
||
b = snd ab
|
||
|
||
module _ where
|
||
private
|
||
forwards : ((a , b) ∈ S)
|
||
→ (Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)
|
||
forwards ab∈S = a , (refl , ab∈S)
|
||
|
||
backwards : (Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)
|
||
→ (a , b) ∈ S
|
||
backwards (a' , (a=a' , a'b∈S)) = subst (sym a=a') a'b∈S
|
||
|
||
fwd-bwd : (x : (a , b) ∈ S) → (backwards ∘ forwards) x ≡ x
|
||
-- isbijective x = pathJ (λ y x₁ → (backwards ∘ forwards) x ≡ x) {!!} {!!} {!!}
|
||
fwd-bwd x = pathJprop (λ y _ → y) x
|
||
|
||
bwd-fwd : (x : Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)
|
||
→ (forwards ∘ backwards) x ≡ x
|
||
-- bwd-fwd (y , a≡y , z) = ?
|
||
bwd-fwd (a' , a≡y , z) = pathJ lem0 lem1 a' a≡y z
|
||
where
|
||
lem0 = (λ a'' a≡a'' → ∀ a''b∈S → (forwards ∘ backwards) (a'' , a≡a'' , a''b∈S) ≡ (a'' , a≡a'' , a''b∈S))
|
||
lem1 = (λ z₁ → cong (\ z → a , refl , z) (pathJprop (\ y _ → y) z₁))
|
||
|
||
isequiv : isEquiv
|
||
(Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)
|
||
((a , b) ∈ S)
|
||
backwards
|
||
isequiv y = gradLemma backwards forwards fwd-bwd bwd-fwd y
|
||
|
||
equi : (Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)
|
||
≃ (a , b) ∈ S
|
||
equi = backwards , isequiv
|
||
|
||
ident-l : (Σ[ a' ∈ A ] (a , a') ∈ Diag A × (a' , b) ∈ S)
|
||
≡ (a , b) ∈ S
|
||
ident-l = equivToPath equi
|
||
|
||
module _ where
|
||
private
|
||
forwards : ((a , b) ∈ S)
|
||
→ (Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B)
|
||
forwards proof = b , (proof , refl)
|
||
|
||
backwards : (Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B)
|
||
→ (a , b) ∈ S
|
||
backwards (b' , (ab'∈S , b'=b)) = subst b'=b ab'∈S
|
||
|
||
bwd-fwd : (x : (a , b) ∈ S) → (backwards ∘ forwards) x ≡ x
|
||
bwd-fwd x = pathJprop (λ y _ → y) x
|
||
|
||
fwd-bwd : (x : Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B)
|
||
→ (forwards ∘ backwards) x ≡ x
|
||
fwd-bwd (b' , (ab'∈S , b'≡b)) = pathJ lem0 lem1 b' (sym b'≡b) ab'∈S
|
||
where
|
||
lem0 = (λ b'' b≡b'' → (ab''∈S : (a , b'') ∈ S) → (forwards ∘ backwards) (b'' , ab''∈S , sym b≡b'') ≡ (b'' , ab''∈S , sym b≡b''))
|
||
lem1 = (λ ab''∈S → cong (λ φ → b , φ , refl) (pathJprop (λ y _ → y) ab''∈S))
|
||
|
||
isequiv : isEquiv
|
||
(Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B)
|
||
((a , b) ∈ S)
|
||
backwards
|
||
isequiv ab∈S = gradLemma backwards forwards bwd-fwd fwd-bwd ab∈S
|
||
|
||
equi : (Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B)
|
||
≃ ab ∈ S
|
||
equi = backwards , isequiv
|
||
|
||
ident-r : (Σ[ b' ∈ B ] (a , b') ∈ S × (b' , b) ∈ Diag B)
|
||
≡ ab ∈ S
|
||
ident-r = equivToPath equi
|
||
|
||
module _ {A B C D : Set} {S : Subset (A × B)} {R : Subset (B × C)} {Q : Subset (C × D)} (ad : A × D) where
|
||
private
|
||
a : A
|
||
a = fst ad
|
||
d : D
|
||
d = snd ad
|
||
|
||
Q⊕⟨R⊕S⟩ : Set
|
||
Q⊕⟨R⊕S⟩ = Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q
|
||
⟨Q⊕R⟩⊕S : Set
|
||
⟨Q⊕R⟩⊕S = Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q)
|
||
|
||
fwd : Q⊕⟨R⊕S⟩ → ⟨Q⊕R⟩⊕S
|
||
fwd (c , (b , (ab∈S , bc∈R)) , cd∈Q) = b , (ab∈S , (c , (bc∈R , cd∈Q)))
|
||
|
||
bwd : ⟨Q⊕R⟩⊕S → Q⊕⟨R⊕S⟩
|
||
bwd (b , (ab∈S , (c , (bc∈R , cd∈Q)))) = c , (b , ab∈S , bc∈R) , cd∈Q
|
||
|
||
fwd-bwd : (x : ⟨Q⊕R⟩⊕S) → (fwd ∘ bwd) x ≡ x
|
||
fwd-bwd x = refl
|
||
|
||
bwd-fwd : (x : Q⊕⟨R⊕S⟩) → (bwd ∘ fwd) x ≡ x
|
||
bwd-fwd x = refl
|
||
|
||
isequiv : isEquiv
|
||
(Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q)
|
||
(Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q))
|
||
fwd
|
||
isequiv = gradLemma fwd bwd fwd-bwd bwd-fwd
|
||
|
||
equi : (Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q)
|
||
≃ (Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q))
|
||
equi = fwd , isequiv
|
||
|
||
-- assocc : Q + (R + S) ≡ (Q + R) + S
|
||
assocc : (Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q)
|
||
≡ (Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q))
|
||
assocc = equivToPath equi
|
||
|
||
Rel-as-Cat : Category
|
||
Rel-as-Cat = record
|
||
{ Object = Set
|
||
; Arrow = λ S R → Subset (S × R)
|
||
; 𝟙 = λ {S} → Diag S
|
||
; _⊕_ = λ {A B C} S R → λ {( a , c ) → Σ[ b ∈ B ] ( (a , b) ∈ R × (b , c) ∈ S )}
|
||
; assoc = funExt assocc
|
||
; ident = funExt ident-l , funExt ident-r
|
||
}
|
||
|
||
module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ}} where
|
||
private
|
||
C-Obj = Object ℂ
|
||
_+_ = Arrow ℂ
|
||
|
||
RepFunctor : Functor ℂ 𝕊et-as-Cat
|
||
RepFunctor =
|
||
record
|
||
{ F = λ A → (B : C-Obj) → Hom {ℂ = ℂ} A B
|
||
; f = λ { {c' = c'} f g → {!HomFromArrow {ℂ = } c' g!}}
|
||
; ident = {!!}
|
||
; distrib = {!!}
|
||
}
|