diff --git a/chapter/layer3.tex b/chapter/layer3.tex index e9d06d5..d370401 100644 --- a/chapter/layer3.tex +++ b/chapter/layer3.tex @@ -72,6 +72,33 @@ In effect the resulting shorter formula is this: \fig{math/eigrp-dual-short}{eigrp-dual-short}{\glspl{eigrp} \gls{dual} short formula} +\subsection{How it actually works} + +\gls{eigrp} does it routing on a \texttt{next-hop} basis. Meaning it only stores information about a given routes next turn. And \textbf{not} about the destination itself. (Like \gls{ospf} does) + +\subsubsection{Tables} + +\gls{eigrp} contains three tables for storing route information. + +\begin{enumerate} + \item \itemhead[]{Neighbor Table} + \begin{itemize} + \item \textit{Lists \textbf{all} directly connected neighbors} + \item Next-Hop Router(s) + \item Interface(s) + \end{itemize} + \item \itemhead[]{Topology Table} + \begin{itemize} + \item \textit{Lists \textbf{all} learned from \textbf{all} \gls{eigrp} neighbors} + \item Destination + \item Metric + \end{itemize} + \item \itemhead[]{Global Routing Table} + \begin{itemize} + \item \textit{Best routes from \gls{eigrp} topology tabel will be copied to the routing table} + \end{itemize} +\end{enumerate} + \newpage \section{RIP}