mirror of
https://github.com/samsapti/bachelor-project.git
synced 2024-11-25 14:27:54 +00:00
Make matchmaking work with cases as prefs
This commit is contained in:
parent
8960b9a69c
commit
35540af207
|
@ -6,9 +6,12 @@ from Compiler.util import *
|
|||
|
||||
from Compiler.oram import OptimalORAM
|
||||
|
||||
from Compiler.library import for_range, do_while, time, if_, print_ln, crash, print_str
|
||||
from Compiler.library import for_range, do_while, time, if_, print_ln, crash, print_str, break_loop
|
||||
from Compiler.gs import OMatrix, OStack
|
||||
|
||||
# Optimizations
|
||||
program.use_edabit(True)
|
||||
|
||||
|
||||
class Matchmaker:
|
||||
"""
|
||||
|
@ -27,19 +30,22 @@ class Matchmaker:
|
|||
self.unpaired.append(patient, for_real)
|
||||
|
||||
def request_therapist(self, patient, therapist, for_real):
|
||||
(requested_therapist,), free = self.paired_patients.read(therapist)
|
||||
experience = self.t_exps[therapist][0]
|
||||
(old_patient,), free = self.paired_patients.read(therapist) # patient paired to therapist
|
||||
paired = 1 - free
|
||||
rank_patient = self.t_exps[therapist][patient]
|
||||
(rank_requested_therapist,), worst_therapist = self.t_exps[therapist].read(paired*requested_therapist)
|
||||
leaving = self.int_type(rank_patient) < self.int_type(rank_requested_therapist)
|
||||
if self.M < self.N:
|
||||
leaving = 1 - (1 - leaving) * (1 - worst_therapist)
|
||||
print_str('therapist: %s, patient: %s, requested therapist: %s, worst therapist: %s, ',
|
||||
*(x.reveal() for x in (therapist, patient, requested_therapist, worst_therapist)))
|
||||
print_ln('rank patient: %s, rank requested therapist: %s, paired: %s, leaving: %s',
|
||||
rank_patient = self.p_cases[patient][0]
|
||||
rank_old_patient = self.p_cases[old_patient][0] * paired
|
||||
matches_exp = self.int_type(rank_patient) == self.int_type(experience)
|
||||
same_as_old = self.int_type(rank_patient) != self.int_type(rank_old_patient)
|
||||
leaving = paired * matches_exp * same_as_old
|
||||
|
||||
print_str('therapist: %s, patient: %s, old patient: %s, ', # worst therapist: %s, ',
|
||||
*(x.reveal() for x in (therapist, patient, old_patient))) # , worst_therapist)))
|
||||
print_ln('rank patient: %s, rank old patient: %s, paired: %s, leaving: %s',
|
||||
*(x.reveal() for x in
|
||||
(rank_patient, rank_requested_therapist, paired, leaving)))
|
||||
self.unpair(requested_therapist, therapist, paired * leaving * for_real)
|
||||
(rank_patient, rank_old_patient, paired, leaving)))
|
||||
|
||||
self.unpair(old_patient, therapist, paired * leaving * for_real)
|
||||
self.pair(patient, therapist, (1 - (paired * (1 - leaving))) * for_real)
|
||||
self.unpaired.append(patient, paired * (1 - leaving) * for_real)
|
||||
|
||||
|
@ -50,6 +56,7 @@ class Matchmaker:
|
|||
else:
|
||||
loop = for_range(n_loops)
|
||||
init_rounds = n_loops / self.M
|
||||
|
||||
self.paired_therapists = \
|
||||
self.oram_type(self.N, entry_size=log2(self.N),
|
||||
init_rounds=0, value_type=self.basic_type)
|
||||
|
@ -60,7 +67,7 @@ class Matchmaker:
|
|||
self.oram_type(self.N, entry_size=log2(self.N),
|
||||
init_rounds=0, value_type=self.basic_type)
|
||||
self.unpaired = OStack(self.N, oram_type=self.oram_type,
|
||||
int_type=self.int_type)
|
||||
int_type=self.int_type)
|
||||
|
||||
@for_range(init_rounds)
|
||||
def _(i):
|
||||
|
@ -72,40 +79,54 @@ class Matchmaker:
|
|||
rounds.iadd(1)
|
||||
time()
|
||||
patient = self.unpaired.pop()
|
||||
pref = self.int_type(request_therapist[patient])
|
||||
if self.M < self.N and n_loops is None:
|
||||
@if_((pref == self.M).reveal())
|
||||
pref = self.int_type(p_cases[patient][0]) # patient suffers from pref
|
||||
therapist = types.MemValue(self.int_type(0))
|
||||
|
||||
# Get index of next free therapist who has experience with pref
|
||||
@for_range(self.N)
|
||||
def _(i):
|
||||
(_,), free = self.paired_patients.read(i)
|
||||
@if_(((pref == t_exps[i][0]) * free).reveal())
|
||||
def _():
|
||||
therapist.write(self.int_type(i))
|
||||
break_loop()
|
||||
|
||||
@if_((i == self.N).reveal())
|
||||
def _():
|
||||
print_ln('run out of acceptable therapists')
|
||||
crash()
|
||||
request_therapist[patient] = pref + 1
|
||||
self.request_therapist(patient, self.p_cases[patient][pref], True)
|
||||
|
||||
request_therapist[patient] = therapist.read()
|
||||
self.request_therapist(patient, therapist.read(), True)
|
||||
print_ln('patient: %s, pref: %s, left: %s',
|
||||
*(x.reveal() for x in (patient, pref, self.unpaired.size)))
|
||||
return types.regint((self.unpaired.size > 0).reveal())
|
||||
|
||||
print_ln('%s rounds', rounds)
|
||||
print_ln('\nPRINTING PAIRS\n')
|
||||
|
||||
@for_range(init_rounds)
|
||||
def _(i):
|
||||
types.cint(i).print_reg('ther')
|
||||
self.paired_patients[i].reveal().print_reg('pati')
|
||||
print_ln('patient %s : therapist %s', i, self.paired_therapists[i].reveal())
|
||||
#print_ln('therapist %s : patient %s', i, self.paired_patients[i].reveal())
|
||||
#types.cint(i).print_reg('ther')
|
||||
#self.paired_patients[i].reveal().print_reg('pati')
|
||||
|
||||
def __init__(self, N, p_cases, t_exps, M=1, reverse=False,
|
||||
def __init__(self, p_cases, t_exps, N, M=None, reverse=False,
|
||||
oram_type=OptimalORAM, int_type=types.sint):
|
||||
self.N = N
|
||||
self.M = M
|
||||
self.M = N if M is None else M
|
||||
self.p_cases = p_cases
|
||||
self.t_exps = t_exps
|
||||
self.reverse = reverse
|
||||
self.oram_type = oram_type
|
||||
self.int_type = int_type
|
||||
self.basic_type = int_type.basic_type
|
||||
print('match', N, M)
|
||||
|
||||
|
||||
# Constants
|
||||
PLAYERS = 3
|
||||
MATCHING_SIZE = 10
|
||||
MATCHING_SIZE = 50
|
||||
|
||||
p_shares = Matrix(rows=PLAYERS, columns=MATCHING_SIZE, value_type=types.sint)
|
||||
t_shares = Matrix(rows=PLAYERS, columns=MATCHING_SIZE, value_type=types.sint)
|
||||
|
@ -114,28 +135,18 @@ t_shares = Matrix(rows=PLAYERS, columns=MATCHING_SIZE, value_type=types.sint)
|
|||
# The matrix is ordered as m[row:player][col:share]
|
||||
@for_range(PLAYERS)
|
||||
def _(i):
|
||||
p_index = MemValue(cint(0))
|
||||
t_index = MemValue(cint(0))
|
||||
@for_range(2 * MATCHING_SIZE)
|
||||
def _(j):
|
||||
index = j % MATCHING_SIZE
|
||||
typ = sint.get_input_from(i)
|
||||
|
||||
@do_while
|
||||
def _():
|
||||
try:
|
||||
typ = cint.get_input_from(i)
|
||||
@if_((typ == -100).reveal())
|
||||
def _():
|
||||
p_shares[i][index] = sint.get_input_from(i)
|
||||
|
||||
@if_e(typ == -100)
|
||||
def _():
|
||||
p_shares[i][p_index.read()] = sint.get_input_from(i)
|
||||
p_index.iadd(1)
|
||||
@else_
|
||||
def _():
|
||||
@if_(typ == -200)
|
||||
def _():
|
||||
t_shares[i][t_index.read()] = sint.get_input_from(i)
|
||||
t_index.iadd(1)
|
||||
|
||||
return 1
|
||||
except Exception:
|
||||
return 0
|
||||
@if_((typ == -200).reveal())
|
||||
def _():
|
||||
t_shares[i][index] = sint.get_input_from(i)
|
||||
|
||||
# Add entire column together to reveal secret-shared input
|
||||
p_cases = OMatrix(N=MATCHING_SIZE, M=1, oram_type=OptimalORAM, int_type=types.sint)
|
||||
|
@ -144,7 +155,10 @@ t_exps = OMatrix(N=MATCHING_SIZE, M=1, oram_type=OptimalORAM, int_type=types.sin
|
|||
@for_range(MATCHING_SIZE)
|
||||
def _(i):
|
||||
p_cases[i][0] = sum(p_shares.get_column(i))
|
||||
print_ln('p_case %s: %s', i, p_cases[i][0].reveal())
|
||||
t_exps[i][0] = sum(t_shares.get_column(i))
|
||||
print_ln('t_exp %s: %s', i, t_exps[i][0].reveal())
|
||||
|
||||
mm = Matchmaker(MATCHING_SIZE, p_cases, t_exps)
|
||||
# Run algorithm
|
||||
mm = Matchmaker(p_cases, t_exps, N=MATCHING_SIZE, M=1)
|
||||
mm.match()
|
||||
|
|
Loading…
Reference in a new issue