mirror of
https://github.com/samsapti/bachelor-project.git
synced 2024-11-25 22:37:55 +00:00
Refactor Matchmaker to take p_cases and t_exps (OMatrix)
This commit is contained in:
parent
2c46b8129f
commit
ea6cf3cab9
|
@ -12,60 +12,36 @@ from Compiler.gs import OMatrix, OMatrixRow, OStack
|
||||||
|
|
||||||
class Matchmaker:
|
class Matchmaker:
|
||||||
"""
|
"""
|
||||||
Makes self.f_ranks and self.m_prefs as instances of OMatrix
|
Based on Matchmaker from Compiler/gs.py in MP-SPDZ, copyright (c) 2023,
|
||||||
We can call them p_cases (patient cases) and t_exps (therapist experience)
|
Commonwealth Scientific and Industrial Research Organisation (CSIRO)
|
||||||
|
ABN 41 687 119 230, published under the BSD 3-Clause Licence
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def init_easy(self):
|
def engage(self, patient, therapist, for_real):
|
||||||
self.m_prefs = OMatrix(self.N, self.M, oram_type=self.oram_type,
|
self.wives.access(patient, therapist, for_real)
|
||||||
int_type=self.int_type)
|
self.husbands.access(therapist, patient, for_real)
|
||||||
|
|
||||||
@for_range(self.N)
|
def dump(self, patient, therapist, for_real):
|
||||||
def f(i):
|
self.wives.delete(patient, for_real)
|
||||||
time()
|
self.husbands.delete(therapist, for_real)
|
||||||
types.cint(i).print_reg('mpre')
|
self.unengaged.append(patient, for_real)
|
||||||
|
|
||||||
@for_range(self.M)
|
def propose(self, patient, therapist, for_real):
|
||||||
def f(j):
|
(fiance,), free = self.husbands.read(therapist)
|
||||||
self.m_prefs[i][j] = (i + j) % self.N
|
|
||||||
|
|
||||||
self.f_ranks = OMatrix(self.N, oram_type=self.oram_type,
|
|
||||||
int_type=self.int_type)
|
|
||||||
|
|
||||||
@for_range(self.N)
|
|
||||||
def f(i):
|
|
||||||
time()
|
|
||||||
types.cint(i).print_reg('fran')
|
|
||||||
|
|
||||||
@for_range(self.M)
|
|
||||||
def f(j):
|
|
||||||
self.f_ranks[i][(j - i + self.N) % self.N] = j
|
|
||||||
|
|
||||||
def engage(self, man, woman, for_real):
|
|
||||||
self.wives.access(man, woman, for_real)
|
|
||||||
self.husbands.access(woman, man, for_real)
|
|
||||||
|
|
||||||
def dump(self, man, woman, for_real):
|
|
||||||
self.wives.delete(man, for_real)
|
|
||||||
self.husbands.delete(woman, for_real)
|
|
||||||
self.unengaged.append(man, for_real)
|
|
||||||
|
|
||||||
def propose(self, man, woman, for_real):
|
|
||||||
(fiance,), free = self.husbands.read(woman)
|
|
||||||
engaged = 1 - free
|
engaged = 1 - free
|
||||||
rank_man = self.f_ranks[woman][man]
|
rank_man = self.t_exps[therapist][patient]
|
||||||
(rank_fiance,), worst_fiance = self.f_ranks[woman].read(engaged*fiance)
|
(rank_fiance,), worst_fiance = self.t_exps[therapist].read(engaged*fiance)
|
||||||
leaving = self.int_type(rank_man) < self.int_type(rank_fiance)
|
leaving = self.int_type(rank_man) < self.int_type(rank_fiance)
|
||||||
if self.M < self.N:
|
if self.M < self.N:
|
||||||
leaving = 1 - (1 - leaving) * (1 - worst_fiance)
|
leaving = 1 - (1 - leaving) * (1 - worst_fiance)
|
||||||
print_str('woman: %s, man: %s, fiance: %s, worst fiance: %s, ',
|
print_str('woman: %s, man: %s, fiance: %s, worst fiance: %s, ',
|
||||||
*(x.reveal() for x in (woman, man, fiance, worst_fiance)))
|
*(x.reveal() for x in (therapist, patient, fiance, worst_fiance)))
|
||||||
print_ln('rank man: %s, rank fiance: %s, engaged: %s, leaving: %s',
|
print_ln('rank man: %s, rank fiance: %s, engaged: %s, leaving: %s',
|
||||||
*(x.reveal() for x in
|
*(x.reveal() for x in
|
||||||
(rank_man, rank_fiance, engaged, leaving)))
|
(rank_man, rank_fiance, engaged, leaving)))
|
||||||
self.dump(fiance, woman, engaged * leaving * for_real)
|
self.dump(fiance, therapist, engaged * leaving * for_real)
|
||||||
self.engage(man, woman, (1 - (engaged * (1 - leaving))) * for_real)
|
self.engage(patient, therapist, (1 - (engaged * (1 - leaving))) * for_real)
|
||||||
self.unengaged.append(man, engaged * (1 - leaving) * for_real)
|
self.unengaged.append(patient, engaged * (1 - leaving) * for_real)
|
||||||
|
|
||||||
def match(self, n_loops=None):
|
def match(self, n_loops=None):
|
||||||
if n_loops is None or n_loops > self.N * self.M:
|
if n_loops is None or n_loops > self.N * self.M:
|
||||||
|
@ -95,17 +71,17 @@ class Matchmaker:
|
||||||
def f(i=None):
|
def f(i=None):
|
||||||
rounds.iadd(1)
|
rounds.iadd(1)
|
||||||
time()
|
time()
|
||||||
man = self.unengaged.pop()
|
patient = self.unengaged.pop()
|
||||||
pref = self.int_type(propose[man])
|
pref = self.int_type(propose[patient])
|
||||||
if self.M < self.N and n_loops is None:
|
if self.M < self.N and n_loops is None:
|
||||||
@if_((pref == self.M).reveal())
|
@if_((pref == self.M).reveal())
|
||||||
def f():
|
def f():
|
||||||
print_ln('run out of acceptable women')
|
print_ln('run out of acceptable women')
|
||||||
crash()
|
crash()
|
||||||
propose[man] = pref + 1
|
propose[patient] = pref + 1
|
||||||
self.propose(man, self.m_prefs[man][pref], True)
|
self.propose(patient, self.p_cases[patient][pref], True)
|
||||||
print_ln('man: %s, pref: %s, left: %s',
|
print_ln('man: %s, pref: %s, left: %s',
|
||||||
*(x.reveal() for x in (man, pref, self.unengaged.size)))
|
*(x.reveal() for x in (patient, pref, self.unengaged.size)))
|
||||||
return types.regint((self.unengaged.size > 0).reveal())
|
return types.regint((self.unengaged.size > 0).reveal())
|
||||||
print_ln('%s rounds', rounds)
|
print_ln('%s rounds', rounds)
|
||||||
|
|
||||||
|
@ -114,15 +90,17 @@ class Matchmaker:
|
||||||
types.cint(i).print_reg('wife')
|
types.cint(i).print_reg('wife')
|
||||||
self.husbands[i].reveal().print_reg('husb')
|
self.husbands[i].reveal().print_reg('husb')
|
||||||
|
|
||||||
def __init__(self, N, M=None, reverse=False, oram_type=OptimalORAM,
|
def __init__(self, N, p_cases, t_exps, M=1, reverse=False,
|
||||||
int_type=types.sint):
|
oram_type=OptimalORAM, int_type=types.sint):
|
||||||
self.N = N
|
self.N = N
|
||||||
self.M = N if M is None else M
|
self.M = M
|
||||||
self.oram_type = oram_type
|
self.p_cases = p_cases
|
||||||
|
self.t_exps = t_exps
|
||||||
self.reverse = reverse
|
self.reverse = reverse
|
||||||
|
self.oram_type = oram_type
|
||||||
self.int_type = int_type
|
self.int_type = int_type
|
||||||
self.basic_type = int_type.basic_type
|
self.basic_type = int_type.basic_type
|
||||||
print('match', self.oram_type)
|
print('match', N, M)
|
||||||
|
|
||||||
|
|
||||||
""" CONSTANTS """
|
""" CONSTANTS """
|
||||||
|
@ -134,8 +112,9 @@ MATCHING_SIZE = 2
|
||||||
""" Assembling lists """
|
""" Assembling lists """
|
||||||
|
|
||||||
p_shares = Matrix(rows=PLAYERS, columns=MATCHING_SIZE, value_type=sint)
|
p_shares = Matrix(rows=PLAYERS, columns=MATCHING_SIZE, value_type=sint)
|
||||||
|
t_shares = Matrix(rows=PLAYERS, columns=MATCHING_SIZE, value_type=sint)
|
||||||
|
|
||||||
# Fill data from players into the matrix
|
# Fill data from players into the patient matrix
|
||||||
# The matrix is ordered as m[row:player][col:share]
|
# The matrix is ordered as m[row:player][col:share]
|
||||||
@for_range(PLAYERS)
|
@for_range(PLAYERS)
|
||||||
def _(i):
|
def _(i):
|
||||||
|
@ -143,20 +122,38 @@ def _(i):
|
||||||
def _(j):
|
def _(j):
|
||||||
p_shares[i][j] = sint.get_input_from(i)
|
p_shares[i][j] = sint.get_input_from(i)
|
||||||
|
|
||||||
|
# Fill data from players into the therapist matrix
|
||||||
|
# The matrix is ordered as m[row:player][col:share]
|
||||||
|
@for_range(PLAYERS)
|
||||||
|
def _(i):
|
||||||
|
@for_range(MATCHING_SIZE)
|
||||||
|
def _(j):
|
||||||
|
t_shares[i][j] = sint.get_input_from(i)
|
||||||
|
|
||||||
@for_range(PLAYERS)
|
@for_range(PLAYERS)
|
||||||
def _(i):
|
def _(i):
|
||||||
@for_range(MATCHING_SIZE)
|
@for_range(MATCHING_SIZE)
|
||||||
def _(j):
|
def _(j):
|
||||||
print_ln('input from player %s: %s', i, p_shares[i][j].reveal())
|
print_ln('input from player %s: %s', i, p_shares[i][j].reveal())
|
||||||
|
|
||||||
|
@for_range(PLAYERS)
|
||||||
|
def _(i):
|
||||||
|
@for_range(MATCHING_SIZE)
|
||||||
|
def _(j):
|
||||||
|
print_ln('input from player %s: %s', i, t_shares[i][j].reveal())
|
||||||
|
|
||||||
# Add entire column together to reveal secret-shared input
|
# Add entire column together to reveal secret-shared input
|
||||||
|
p_cases = OMatrix(N=MATCHING_SIZE, M=1, oram_type=OptimalORAM, int_type=types.sint)
|
||||||
|
t_exps = OMatrix(N=MATCHING_SIZE, M=1, oram_type=OptimalORAM, int_type=types.sint)
|
||||||
|
|
||||||
@for_range(MATCHING_SIZE)
|
@for_range(MATCHING_SIZE)
|
||||||
def _(i):
|
def _(i):
|
||||||
col = p_shares.get_column(i)
|
p_val = sum(p_shares.get_column(i))
|
||||||
print_ln('res: %s', sum(col).reveal())
|
p_cases[i][0] = p_val
|
||||||
|
t_val = sum(t_shares.get_column(i))
|
||||||
|
t_exps[i][0] = t_val
|
||||||
|
print_ln('p_res: %s', p_val.reveal())
|
||||||
|
print_ln('t_res: %s', t_val.reveal())
|
||||||
|
|
||||||
|
mm = Matchmaker(MATCHING_SIZE, p_cases, t_exps)
|
||||||
# mm = Matchmaker(50, oram_type=OptimalORAM)
|
mm.match()
|
||||||
# mm.init_easy()
|
|
||||||
# mm.match()
|
|
||||||
|
|
Loading…
Reference in a new issue