#!/bin/bash # Create a boxplot of running 1000 jobs 10 times on all released # versions of GNU Parallel # test # --cpus-as-cores (virker ikke) # hvor stor forskel mlm 2 run # hvor stor forskel mlm 1000/3000/10000 # hvor stor forskel mlm 10/30/100 # Non-fixed cpu-speed: 50% spread=1-2 ms # Fixed cpu-speed: 50% spread=0.7-1.5 ms # 4-cpu: 30% faster: 9 ms -> 6 ms if ! /tmp/bin/parallel-20140722 --version; then wget -c ftp://ftp.uni-kl.de/pub/gnu/parallel/p* parallel 'gpg --auto-key-locate keyserver --keyserver-options auto-key-retrieve {}' ::: *.sig parallel --plus 'tar xvf {.} && cd {...} && ./configure --prefix /tmp/{.}-bin && make && make install' ::: *sig perl -i -pe 's/qw\(keys/(keys/' parallel*/src/parallel mkdir /tmp/bin parallel cp {} /tmp/bin/'{=s:/.*::=}' ::: parallel*/src/parallel fi measure() { # 100: Much jumping # 300: Same sort order every time # 1000: Same sort order every time OUTER=$1 INNER=$2 CORES=$3 VERSION=$4 # Force cpuspeed at 1.7GHz - seems to give tighter results forever 'sleep 10;parallel sudo cpufreq-set -f 1700MHz -c{} ::: {0..7}' & PATH=/tmp/bin:$PATH cd /tmp/bin ls parallel-* | shuf | parallel -j$CORES --joblog /tmp/joblog.csv 'seq '$INNER' | {2} true' :::: <(seq $OUTER) - killall forever Rscript - <<_ jl<-read.csv("/tmp/joblog.csv",sep="\t"); jl\$Command <- as.factor(substr(jl\$Command, 13, nchar(as.character(jl\$Command))-5)) pdf("/tmp/boxplot.pdf"); par(cex.axis=0.5); boxplot(JobRuntime/$INNER*1000~Command,data=jl,las=2,outline=F, ylab="milliseconds/job",main="GNU Parallel performance\n$OUTER trials each running $INNER"); _ cp /tmp/boxplot.pdf /tmp/boxplot-j$CORES-1.7ghz-$OUTER-${INNER}v$VERSION.pdf evince /tmp/boxplot.pdf } measure 3000 1000 8 1