GNU Parallel

NAME
parallel - build and execute shell command lines from standard input in parallel

SYNOPSIS
parallel [options] [command [arguments]] < list_of arguments

parallel [options] [command [arguments]] (::: arguments | :::: ardfile(s)) ...
parallel --semaphore [options] command

#1/usr/bin/parallel --shebang [options] [command [arguments]]

DESCRIPTION

GNU parallel is a shell tool for executing jobs in parallel using one or more computers. A job can be a
single command or a small script that has to be run for each of the lines in the input. The typical input
is a list of files, a list of hosts, a list of users, a list of URLSs, or a list of tables. A job can also be a
command that reads from a pipe. GNU parallel can then split the input into blocks and pipe a block
into each command in parallel.

If you use xargs and tee today you will find GNU parallel very easy to use as GNU parallel is written
to have the same options as xargs. If you write loops in shell, you will find GNU parallel may be able
to replace most of the loops and make them run faster by running several jobs in parallel.

GNU parallel makes sure output from the commands is the same output as you would get had you
run the commands sequentially. This makes it possible to use output from GNU parallel as input for
other programs.

For each line of input GNU parallel will execute command with the line as arguments. If no command
is given, the line of input is executed. Several lines will be run in parallel. GNU parallel can often be
used as a substitute for xargs or cat | bash.

Reader's guide
Start by watching the intro videos for a quick introduction:
http://www.youtube.com/playlist?list=PL284C9FF2488BC6D1

Then look at the EXAMPLES after the list of OPTIONS. That will give you an idea of what GNU
parallel is capable of.

Then spend an hour walking through the tutorial (man parallel_tutorial). Your command line will love
you for it.

Finally you may want to look at the rest of this manual if you have special needs not already covered.

OPTIONS

command
Command to execute. If command or the following arguments contain replacement
strings (such as {}) every instance will be substituted with the input.
If command is given, GNU parallel solve the same tasks as xargs. If command is
not given GNU parallel will behave similar to cat | sh.
The command must be an executable, a script, a composed command, or a function.
If it is a Bash function you need to export -f the function first. An alias will, however,
not work (see why http://www.perlmonks.org/index.pl?node_id=484296).

{

Input line. This replacement string will be replaced by a full line read from the input
source. The input source is normally stdin (standard input), but can also be given
with -a, :::, or i,

The replacement string {} can be changed with -I.

Page 1

GNU Parallel

{}

4

i

7}

#}

{n}

{n}

If the command line contains no replacement strings then {} will be appended to the
command line.

Input line without extension. This replacement string will be replaced by the input
with the extension removed. If the input line contains . after the last / the last . till the
end of the string will be removed and {.} will be replaced with the remaining. E.g.
foo.jpg becomes foo, subdir/foo.jpg becomes subdir/foo, sub.dir/foo.jpg becomes
sub.dir/foo, sub.dir/bar remains sub.dir/bar. If the input line does not contain . it will
remain unchanged.

The replacement string {.} can be changed with --er.
To understand replacement strings see {}.

Basename of input line. This replacement string will be replaced by the input with the
directory part removed.

The replacement string {/} can be changed with --basenamereplace.
To understand replacement strings see {}.

Dirname of input line. This replacement string will be replaced by the dir of the input
line. See dirname(1).

The replacement string {//} can be changed with --dirnamereplace.
To understand replacement strings see {}.

Basename of input line without extension. This replacement string will be replaced
by the input with the directory and extension part removed. It is a combination of {/}
and {.}.

The replacement string {/.} can be changed with --basenameextensionreplace.
To understand replacement strings see {}.

Sequence number of the job to run. This replacement string will be replaced by the
sequence number of the job being run. It contains the same number as
$PARALLEL_SEQ.

The replacement string {#} can be changed with --seqgreplace.
To understand replacement strings see {}.

Argument from input source n or the n'th argument. This positional replacement
string will be replaced by the input from input source n (when used with -a or ::::) or
with the n'th argument (when used with -N). If n is negative it refers to the n'th last
argument.

To understand replacement strings see {}.

Argument from input source n or the n'th argument without extension. It is a
combination of {n} and {.}.

This positional replacement string will be replaced by the input from input source n
(when used with -a or ::::) or with the n'th argument (when used with -N). The input
will have the extension removed.

To understand positional replacement strings see {n}.

Page 2

GNU Parallel

{n/}

iy

{n/}

1l arguments

Basename of argument from input source n or the n'th argument. It is a combination
of {n} and {/}.

This positional replacement string will be replaced by the input from input source n
(when used with -a or ::::) or with the n'th argument (when used with -N). The input
will have the directory (if any) removed.

To understand positional replacement strings see {n}.

Dirname of argument from input source n or the n'th argument. It is a combination of
{n} and {//}.

This positional replacement string will be replaced by the dir of the input from input
source n (when used with -a or ::::) or with the n'th argument (when used with -N).
See dirname(1).

To understand positional replacement strings see {n}.

Basename of argument from input source n or the n'th argument without extension. It
is a combination of {n}, {/}, and {.}.

This positional replacement string will be replaced by the input from input source n
(when used with -a or ::::) or with the n'th argument (when used with -N). The input
will have the directory (if any) and extension removed.

To understand positional replacement strings see {n}.

Use arguments from the command line as input source instead of stdin (standard
input). Unlike other options for GNU parallel ::: is placed after the command and
before the arguments.

The following are equivalent:

(echo filel; echo file2) | parallel gzip
parallel gzip ::: filel file2

parallel gzip {} ::: filel file2

parallel --arg-sep ,, gzip {} ,, Filel file2
parallel --arg-sep ,, gzip ,, Ffilel file2
parallel ::: "gzip filel" "gzip file2"

To avoid treating ::: as special use --arg-sep to set the argument separator to
something else. See also --arg-sep.

stdin (standard input) will be passed to the first process run.

If multiple ::: are given, each group will be treated as an input source, and all
combinations of input sources will be generated. E.g. ::: 1 2 ::: a b ¢ will result in the
combinations (1,a) (1,b) (1,c) (2,a) (2,b) (2,c). This is useful for replacing nested
for-loops.

;2 and :::: can be mixed. So these are equivalent:

parallel echo {1} {2} {3} ::: 6 7 z:: 45 z:: 123

parallel echo {1} {2} {3} :::: <(seq 6 7) <(seq 4 5) ::::
<(seq 1 3)

parallel -a <(seq 6 7) echo {1} {2} {3} :::: <(seq 4 5) ::::
<(seq 1 3)

parallel -a <(seq 6 7) -a <(seq 4 5) echo {1} {2} {3} ::: 1
23

seq 6 7 | parallel -a - -a <(seq 4 5) echo {1} {2} {3} ::: 1
23

Page 3

GNU Parallel

;i ardfiles

--null

seq 4 5 | parallel echo {1} {2} {3} :::: <(seq 6 7) - ::: 1
23

Another way to write -a argdfilel -a argfile2 ...
::zand @i can be mixed.
See -a, ::: and --xapply.

Use NUL as delimiter. Normally input lines will end in \n (newline). If they end in \O
(NUL), then use this option. It is useful for processing arguments that may contain \n
(newline).

--arg-file input-file

-a input-file

Use input-file as input source. If you use this option, stdin (standard input) is given to
the first process run. Otherwise, stdin (standard input) is redirected from /dev/null.

If multiple -a are given, each input-file will be treated as an input source, and all
combinations of input sources will be generated. E.g. The file foo contains 1 2, the
file bar contains a b c. -a foo -a bar will result in the combinations (1,a) (1,b) (1,c)
(2,a) (2,b) (2,c). This is useful for replacing nested for-loops.

See also --xapply and {n}.

--arg-file-sep sep-str

Use sep-str instead of :::: as separator string between command and argument files.
Useful if :::: is used for something else by the command.

See also: ::::.

--arg-sep sep-str

--bar

--basefile file
--bf file

Use sep-str instead of ::: as separator string. Useful if ::: is used for something else
by the command.

Also useful if you command uses ::: but you still want to read arguments from stdin
(standard input): Simply change --arg-sep to a string that is not in the command line.

See also: ::..

Show progress as a progress bar. In the bar is shown: % of jobs completed,
estimated seconds left, and number of jobs started.

It is compatible with zenity:

seq 1000 | parallel -j30 --bar '(echo {};sleep 0.1)' 2> >(zenity --progress --auto-Kkill) |
wce

file will be transferred to each sshlogin before a jobs is started. It will be removed if
--cleanup is active. The file may be a script to run or some common base data
needed for the jobs. Multiple --bf can be specified to transfer more basefiles. The file
will be transferred the same way as --transfer.

--basenamereplace replace-str

--bnr replace-str

Page 4

GNU Parallel

Use the replacement string replace-str instead of {/} for basename of input line.

--basenameextensionreplace replace-str

--bner replace-str

__bg

--bibtex

--block size

Use the replacement string replace-str instead of {/.} for basename of input line
without extension.

Run command in background thus GNU parallel will not wait for completion of the
command before exiting. This is the default if --semaphore is set.

See also: --fg, man sem.
Implies --semaphore.

Print the BibTeX entry for GNU parallel and disable citation notice.

--block-size size

--cleanup

--colsep regexp

-C regexp

Size of block in bytes. The size can be postfixed with K, M, G, T, P, k, m, g, t, or p
which would multiply the size with 1024, 1048576, 1073741824, 1099511627776,
1125899906842624, 1000, 1000000, 1000000000, 1000000000000, or
1000000000000000 respectively.

GNU parallel tries to meet the block size but can be off by the length of one record.
For performance reasons size should be bigger than a single record.

size defaults to 1M.
See --pipe for use of this.

Remove transferred files. --cleanup will remove the transferred files on the remote
computer after processing is done.

find log -name “*gz® | parallel \
--sshlogin server.example.com --transfer --return {.}.bz2

--cleanup "'zcat {} | bzip -9 >{.}.bz2"

With --transfer the file transferred to the remote computer will be removed on the
remote computer. Directories created will not be removed - even if they are empty.

With --return the file transferred from the remote computer will be removed on the
remote computer. Directories created will not be removed - even if they are empty.

--cleanup is ignored when not used with --transfer or --return.

Column separator. The input will be treated as a table with regexp separating the
columns. The n'th column can be access using {n} or {n.}. E.g. {3} is the 3rd column.

--colsep implies --trim rl.
regexp is a Perl Regular Expression: http://perldoc.perl.org/perlre.html

--compress (alpha testing)

Compress temporary files. If the output is big and very compressible this will take up
less disk space in $STMPDIR and possibly be faster due to less disk 1/0.

GNU parallel will try Izop, pigz, gzip, pbzip2, plzip, bzip2, 1zma, Izip, xz in that

Page 5

GNU Parallel

order, and use the first available.

--compress-program prg (alpha testing)
--decompress-program prg (alpha testing)

Use prg for (de)compressing temporary files. It is assumed that prg -dc will
decompress stdin (standard input) to stdout (standard output) unless
--decompress-program is given.

--ctrlc
Sends SIGINT to tasks running on remote computers thus killing them.

--delimiter delim
-d delim

Input items are terminated by the specified character. Quotes and backslash are not
special; every character in the input is taken literally. Disables the end-of-file string,
which is treated like any other argument. This can be used when the input consists
of simply newline-separated items, although it is almost always better to design your
program to use --null where this is possible. The specified delimiter may be a single
character, a C-style character escape such as \n, or an octal or hexadecimal escape
code. Octal and hexadecimal escape codes are understood as for the printf
command. Multibyte characters are not supported.

--dirnamereplace replace-str
--dnr replace-str
Use the replacement string replace-str instead of {//} for dirname of input line.

-E eof-str
Set the end of file string to eof-str. If the end of file string occurs as a line of input, the
rest of the input is ignored. If neither -E nor -e is used, no end of file string is used.
--delay secs
Delay starting next job secs seconds. GNU parallel will pause secs seconds after
starting each job. secs can be less than 1 seconds.
--dry-run

Print the job to run on stdout (standard output), but do not run the job. Use -v -v to
include the ssh/rsync wrapping if the job would be run on a remote computer. Do not
count on this literaly, though, as the job may be scheduled on another computer or
the local computer if : is in the list.

--eof[=eof-str]

-e[eof-str]
This option is a synonym for the -E option. Use -E instead, because it is POSIX
compliant for xargs while this option is not. If eof-str is omitted, there is no end of file
string. If neither -E nor -e is used, no end of file string is used.

--env var
Copy environment variable var. This will copy var to the environment that the
command is run in. This is especially useful for remote execution.
In Bash var can also be a Bash function - just remember to export -f the function.
The variable ' ' is special. It will copy all enviroment variables except for the ones
mentioned in ~/.parallel/ignored_vars.
See also: --record-env.

--eta

Page 6

GNU Parallel

__fg

--filter-hosts

--gnu

--group

--help
-h

Show the estimated number of seconds before finishing. This forces GNU parallel to
read all jobs before starting to find the number of jobs. GNU parallel normally only
reads the next job to run. Implies --progress.

Run command in foreground thus GNU parallel will wait for completion of the
command before exiting.

See also --bg, man sem.
Implies --semaphore.

Remove down hosts. For each remote host: check that login through ssh works. If
not: do not use this host.

Currently you can not put --filter-hosts in a profile, SPARALLEL, /etc/parallel/config
or similar. This is because GNU parallel uses GNU parallel to compute this, so you
will get an infinite loop. This will likely be fixed in a later release.

Behave like GNU parallel. If --tollef and --gnu are both set, --gnu takes
precedence. --tollef is retired, but --gnu is kept for compatibility.

Group output. Output from each jobs is grouped together and is only printed when
the command is finished. stderr (standard error) first followed by stdout (standard
output). This takes some CPU time. In rare situations GNU parallel takes up lots of
CPU time and if it is acceptable that the outputs from different commands are mixed
together, then disabling grouping with -u can speedup GNU parallel by a factor of
10.

--group is the default. Can be reversed with -u.

Print a summary of the options to GNU parallel and exit.

--halt-on-error <0|1|2>

—-halt <0|1]2>

--header regexp

-l replace-str

0 Do not halt if a job fails. Exit status will be the number of jobs failed. This is the
default.

1 Do not start new jobs if a job fails, but complete the running jobs including
cleanup. The exit status will be the exit status from the last failing job.

2 Kill off all jobs immediately and exit without cleanup. The exit status will be the
exit status from the failing job.

Use regexp as header. For normal usage the matched header (typically the first line:
--header '.*\n") will be split using --colsep (which will default to \t") and column
names can be used as replacement variables: {column name}.

For --pipe the matched header will be prepended to each output.
--header : is an alias for --header ".*\n".
If regexp is a number, it will match that many lines.

Use the replacement string replace-str instead of {}.

Page 7

GNU Parallel

--replace[=replace-str]
-i[replace-str]

This option is a synonym for -Ireplace-str if replace-str is specified, and for -I{}
otherwise. This option is deprecated; use -l instead.

--joblog logfile
Logfile for executed jobs. Save a list of the executed jobs to logfile in the following
TAB separated format: sequence number, sshlogin, start time as seconds since
epoch, run time in seconds, bytes in files transferred, bytes in files returned, exit
status, signal, and command run.
To convert the times into 1ISO-8601 strict do:
perl -a -F"\t" -ne ‘chomp($F[2]="date -d \@$F[2] +%FT%T"); print join("\t",@F)'
See also --resume.

--jobs N

N

--max-procs N

-PN
Number of jobslots. Run up to N jobs in parallel. 0 means as many as possible.
Default is 100% which will run one job per CPU core.
If --semaphore is set default is 1 thus making a mutex.

--jobs +N

-j +N

--max-procs +N

-P +N
Add N to the number of CPU cores. Run this many jobs in parallel. See also
--use-cpus-instead-of-cores.

--jobs -N

-j -N

--max-procs -N

-P -N
Subtract N from the number of CPU cores. Run this many jobs in parallel. If the
evaluated number is less than 1 then 1 will be used. See also
--use-cpus-instead-of-cores.

--jobs N%

-j N%

--max-procs N%

-P N%

Multiply N% with the number of CPU cores. Run this many jobs in parallel. If the
evaluated number is less than 1 then 1 will be used. See also
--use-cpus-instead-of-cores.

--jobs procfile

-j procfile

--max-procs procfile

-P procfile
Read parameter from file. Use the content of procfile as parameter for -j. E.g. procfile

Page 8

GNU Parallel

--keep-order
-k

-L max-lines

could contain the string 100% or +2 or 10. If procfile is changed when a job
completes, procfile is read again and the new number of jobs is computed. If the
number is lower than before, running jobs will be allowed to finish but new jobs will
not be started until the wanted number of jobs has been reached. This makes it
possible to change the number of simultaneous running jobs while GNU parallel is
running.

Keep sequence of output same as the order of input. Normally the output of a job will
be printed as soon as the job completes. Try this to see the difference:

parallel -j4 sleep {}\; echo {} ::: 2143
parallel -j4 -k sleep {}\; echo {} ::: 2143

If used with --onall or --nonall the output will grouped by sshlogin in sorted order.

When used with --pipe: Read records of max-lines.

When used otherwise: Use at most max-lines nonblank input lines per command
line. Trailing blanks cause an input line to be logically continued on the next input
line.

-L 0 means read one line, but insert 0 arguments on the command line.
Implies -X unless -m, --xargs, or --pipe is set.

--max-lines[=max-lines]

-I[max-lines]

When used with --pipe: Read records of max-lines.

When used otherwise: Synonym for the -L option. Unlike -L, the max-lines argument
is optional. If max-lines is not specified, it defaults to one. The -1 option is deprecated
since the POSIX standard specifies -L instead.

-1 0is an alias for -1 1.
Implies -X unless -m, --xargs, or --pipe is set.

--line-buffer (alpha testing)

--load max-load

Buffer output on line basis. --group will keep the output together for a whole job.
--ungroup allows output to mixup with half a line coming from one job and half a line
coming from another job. --line-buffer fits between these two: GNU parallel will print
a full line, but will allow for mixing lines of different jobs.

--line-buffer is slower than both --group and --ungroup.

Do not start new jobs on a given computer unless the number of running processes
on the computer is less than max-load. max-load uses the same syntax as --jobs, so
100% for one per CPU is a valid setting. Only difference is 0 which is interpreted as
0.01.

--controlmaster (experimental)

-M (experimental)

--xargs

Use ssh's ControlMaster to make ssh connections faster. Useful if jobs run remote
and are very fast to run. This is disabled for sshlogins that specify their own ssh
command.

Page 9

GNU Parallel

Multiple arguments. Insert as many arguments as the command line length permits.

If {} is not used the arguments will be appended to the line. If {} is used multiple
times each {} will be replaced with all the arguments.

Support for --xargs with --sshlogin is limited and may fail.

See also -X for context replace. If in doubt use -X as that will most likely do what is
needed.

Multiple arguments. Insert as many arguments as the command line length permits.
If multiple jobs are being run in parallel: distribute the arguments evenly among the
jobs. Use -j1 to avoid this.

If {} is not used the arguments will be appended to the line. If {} is used multiple
times each {} will be replaced with all the arguments.

Support for -m with --sshlogin is limited and may fail.
See also -X for context replace. If in doubt use -X as that will most likely do what is
needed.

--minversion version

Print the version GNU parallel and exit. If the current version of GNU parallel is less
than version the exit code is 255. Otherwise it is 0.

This is useful for scripts that depend on features only available from a certain version
of GNU parallel.

--nonall
--onall with no arguments. Run the command on all computers given with --sshlogin
but take no arguments. GNU parallel will log into --jobs number of computers in
parallel and run the job on the computer. -j adjusts how many computers to log into
in parallel.
This is useful for running the same command (e.g. uptime) on a list of servers.
--onall

Run all the jobs on all computers given with --sshlogin. GNU parallel will log into
--jobs number of computers in parallel and run one job at a time on the computer.
The order of the jobs will not be changed, but some computers may finish before
others. -j adjusts how many computers to log into in parallel.

When using --group the output will be grouped by each server, so all the output from
one server will be grouped together.

--output-as-files

--outputasfiles

--files

Instead of printing the output to stdout (standard output) the output of each job is
saved in a file and the filename is then printed.

--pipe
--spreadstdin

Spread input to jobs on stdin (standard input). Read a block of data from stdin
(standard input) and give one block of data as input to one job.

The block size is determined by --block. The strings --recstart and --recend tell
GNU parallel how a record starts and/or ends. The block read will have the final
partial record removed before the block is passed on to the job. The partial record
will be prepended to next block.

Page 10

GNU Parallel

--plain

--progress

If --recstart is given this will be used to split at record start.
If --recend is given this will be used to split at record end.

If both --recstart and --recend are given both will have to match to find a split
position.
If neither --recstart nor --recend are given --recend defaults to \n'. To have no

record separator use --recend "".
--files is often used with --pipe.

Ignore any --profile, $PARALLEL, and ~/.parallel/config to get full control on the
command line (used by GNU parallel internally when called with --sshlogin).

Show progress of computations. List the computers involved in the task with number
of CPU cores detected and the max number of jobs to run. After that show progress
for each computer: number of running jobs, number of completed jobs, and
percentage of all jobs done by this computer. The percentage will only be available
after all jobs have been scheduled as GNU parallel only read the next job when
ready to schedule it - this is to avoid wasting time and memory by reading everything
at startup.

By sending GNU parallel SIGUSR2 you can toggle turning on/off --progress on a
running GNU parallel process.

See also --eta.

--max-args=max-args

-N max-args

Use at most max-args arguments per command line. Fewer than max-args
arguments will be used if the size (see the -s option) is exceeded, unless the -x
option is given, in which case GNU parallel will exit.

-n 0 means read one argument, but insert 0 arguments on the command line.
Implies -X unless -m is set.

--max-replace-args=max-args

-N max-args

Use at most max-args arguments per command line. Like -n but also makes
replacement strings {1} .. {max-args} that represents argument 1 .. max-args. If too
few args the {n} will be empty.

-N 0 means read one argument, but insert 0 arguments on the command line.
This will set the owner of the homedir to the user:

tr ' '\n' < /etc/passwd | parallel -N7 chown {1} {6}

Implies -X unless -m or --pipe is set.

When used with --pipe -N is the number of records to read. This is somewhat slower
than --block.

--max-line-length-allowed

Print the maximal number of characters allowed on the command line and exit (used
by GNU parallel itself to determine the line length on remote computers).

--number-of-cpus

Print the number of physical CPUs and exit (used by GNU parallel itself to
determine the number of physical CPUs on remote computers).

Page 11

GNU Parallel

--number-of-cores

--no-notice

--nice niceness

--interactive
-p

Print the number of CPU cores and exit (used by GNU parallel itself to determine
the number of CPU cores on remote computers).

Do not display citation notice. A citation notice is printed on stderr (standard error)
only if stderr (standard error) is a terminal, the user has not specified --no-notice,
and the user has not run --bibtex once.

Run the command at this niceness. For simple commands you can just add nice in
front of the command. But if the command consists of more sub commands (Like:
Is|wc) then prepending nice will not always work. --nice will make sure all sub
commands are niced.

Prompt the user about whether to run each command line and read a line from the
terminal. Only run the command line if the response starts with 'y' or 'Y". Implies -t.

--profile profilename

-J profilename

--quote

Use profile profilename for options. This is useful if you want to have multiple
profiles. You could have one profile for running jobs in parallel on the local computer
and a different profile for running jobs on remote computers. See the section
PROFILE FILES for examples.

profilename corresponds to the file ~/.parallel/profilename.

You can give multiple profiles by repeating --profile. If parts of the profiles conflict,
the later ones will be used.

Default: config

Quote command. This will quote the command line so special characters are not
interpreted by the shell. See the section QUOTING. Most people will never need this.
Quoting is disabled by default.

--no-run-if-empty

-r

--record-env

If the stdin (standard input) only contains whitespace, do not run the command.
If used with --pipe this is slow.

Record current environment variables in ~/.parallel/ignored_vars. This is useful
before using --env _.

See also --env.

--recstart startstring

--recend endstring

If --recstart is given startstring will be used to split at record start.
If --recend is given endstring will be used to split at record end.

If both --recstart and --recend are given the combined string endstringstartstring will
have to match to find a split position. This is useful if either startstring or endstring

Page 12

GNU Parallel

match in the middle of a record.

If neither --recstart nor --recend are given then --recend defaults to '\n'. To have no
record separator use --recend "".

--recstart and --recend are used with --pipe.

Use --regexp to interpret --recstart and --recend as regular expressions. This is
slow, however.

--regexp

Use --regexp to interpret --recstart and --recend as regular expressions. This is
slow, however.

--remove-rec-sep
--removerecsep
--Irs

Remove the text matched by --recstart and --recend before piping it to the
command

Only used with --pipe.

--results prefix
--res prefix

Save the output into files. The files will be stored in a directory tree rooted at prefix.
Within this directory tree, each command will result in two files: prefix
I<ARGS>/stdout and prefix/<ARGS>/stderr, where <ARGS> is a sequence of
directories representing the header of the input source (if using --header :) or the
number of the input source and corresponding values.

E.o:

parallel --header : --results foo echo {a} {b} :::- a I 11
b 1 nnni

will generate the files:

foo/a/l/b/111/stderr
foo/a/l/b/1111/stderr
foo/a/ll/b/111/stderr
foo/a/l1/b/1111/stderr
foo/a/l/b/111/stdout
foo/a/l/b/1111/stdout
foo/a/l1/b/111/stdout
foo/a/l1/b/1111/stdout

and
parallel --results foo echo {1} {2} -z:z:z I 11 -z:- 111 1111

will generate the files:

foo/1/1/2/111/stderr
foo/1/1/2/1111/stderr
foo/1/11/2/111/stderr
foo/1/11/72/1111/stderr
foo/1/1/2/111/stdout
foo/1/1/2/1111/stdout
foo/1/11/2/111/stdout
foo/1/11/72/1111/stdout

See also --files, --header, --joblog.

Page 13

GNU Parallel

--resume

--resume-failed

--retries n

Resumes from the last unfinished job. By reading --joblog or the --results dir GNU
parallel will figure out the last unfinished job and continue from there. As GNU
parallel only looks at the sequence numbers in --joblog then the input, the
command, and --joblog all have to remain unchanged; otherwise GNU parallel may
run wrong commands.

See also --joblog, --results, --resume-failed.

Retry all failed and resume from the last unfinished job. By reading --joblog GNU
parallel will figure out the failed jobs and run those again. After that it will resume
last unfinished job and continue from there. As GNU parallel only looks at the
sequence numbers in --joblog then the input, the command, and --joblog all have to
remain unchanged; otherwise GNU parallel may run wrong commands.

See also --joblog, --resume.

If a job falils, retry it on another computer. Do this n times. If there are fewer than n
computers in --sshlogin GNU parallel will re-use the computers. This is useful if
some jobs fail for no apparent reason (such as network failure).

--return filename

--round-robin
--round

Transfer files from remote computers. --return is used with --sshlogin when the
arguments are files on the remote computers. When processing is done the file
filename will be transferred from the remote computer using rsync and will be put
relative to the default login dir. E.g.

echo foo/bar.txt | parallel \
--sshlogin server.example.com —--return {.}.out touch

{-}-out

This will transfer the file SHOME/foo/bar.out from the computer server.example.com
to the file foo/bar.out after running touch foo/bar.out on server.example.com.

echo /tmp/foo/bar.txt | parallel \
--sshlogin server.example.com —--return {.}.out touch

{-}-out

This will transfer the file /tmp/foo/bar.out from the computer server.example.com to
the file /tmp/foo/bar.out after running touch /tmp/foo/bar.out on
server.example.com.

Multiple files can be transferred by repeating the options multiple times:

echo /tmp/foo/bar._txt | \
parallel --sshlogin server._example.com \
--return {.}.out --return {.}.out2 touch {.}.out {.}.out2

--return is often used with --transfer and --cleanup.
--return is ignored when used with --sshlogin : or when not used with --sshlogin.

Normally --pipe will give a single block to each instance of the command. With
--round-robin all blocks will at random be written to commands already running.
This is useful if the command takes a long time to initialize.

--keep-order will not work with --round-robin as it is impossible to track which input
block corresponds to which output.

Page 14

GNU Parallel

--max-chars=max-chars

-S max-chars

--show-limits

--semaphore

Use at most max-chars characters per command line, including the command and
initial-arguments and the terminating nulls at the ends of the argument strings. The
largest allowed value is system-dependent, and is calculated as the argument length
limit for exec, less the size of your environment. The default value is the maximum.

Implies -X unless -m is set.

Display the limits on the command-line length which are imposed by the operating
system and the -s option. Pipe the input from /dev/null (and perhaps specify
--no-run-if-empty) if you don't want GNU parallel to do anything.

Work as a counting semaphore. --semaphore will cause GNU parallel to start
command in the background. When the number of simultaneous jobs is reached,
GNU parallel will wait for one of these to complete before starting another
command.

--semaphore implies --bg unless --fg is specified.

--semaphore implies --semaphorename “tty" unless --semaphorename is
specified.

Used with --fg, --wait, and --semaphorename.
The command sem is an alias for parallel --semaphore.
See also man sem.

--semaphorename name

--id name

Use name as the name of the semaphore. Default is the name of the controlling tty
(output from tty).

The default normally works as expected when used interactively, but when used in a
script name should be set. $$ or my_task _name are often a good value.

The semaphore is stored in ~/.parallel/semaphores/
Implies --semaphore.
See also man sem.

--semaphoretimeout secs (not implemented)

If the semaphore is not released within secs seconds, take it anyway.
Implies --semaphore.
See also man sem.

--seqreplace replace-str

--shebang
--hashbang

Use the replacement string replace-str instead of {#} for job sequence number.

GNU parallel can be called as a shebang (#!) command as the first line of a script.
The content of the file will be treated as inputsource.

Like this:
#1/usr/bin/parallel --shebang -r traceroute

foss.org.my

Page 15

GNU Parallel

--shebang-wrap

--shellquote

--skip-first-line

--sshdelay secs

debian.org
freenetproject.org

--shebang must be set as the first option.

GNU parallel can parallelize scripts by wrapping the shebang line. If the program
can be run like this:

cat arguments | parallel the_program

then the script can be changed to:

#1/usr/bin/parallel --shebang-wrap /the/original/parser
--with-options
E.g.

#1/usr/bin/parallel --shebang-wrap Zusr/bin/python

If the program can be run like this:
cat data | parallel --pipe the_program

then the script can be changed to:

#1/usr/bin/parallel --shebang-wrap --pipe
/the/original/parser --with-options

E.g.
#1/usr/bin/parallel --shebang-wrap --pipe Zusr/bin/perl -w

--shebang-wrap must be set as the first option.

Does not run the command but quotes it. Useful for making quoted composed
commands for GNU parallel.

Do not use the first line of input (used by GNU parallel itself when called with
--shebang).

Delay starting next ssh by secs seconds. GNU parallel will pause secs seconds
after starting each ssh. secs can be less than 1 seconds.

-S [ncpu/]sshlogin[,[ncpu/]sshlogin],...]]

--sshlogin [ncpu/]sshlogin[,[ncpu/]sshlogin],...]]

Distribute jobs to remote computers. The jobs will be run on a list of remote
computers. GNU parallel will determine the number of CPU cores on the remote
computers and run the number of jobs as specified by -j. If the number ncpu is given
GNU parallel will use this number for number of CPU cores on the host. Normally
ncpu will not be needed.

An sshlogin is of the form:
[sshcommand [options]] [username@]hostname

The sshlogin must not require a password.

The sshlogin "' is special, it means 'no ssh' and will therefore run on the local
computer.

Page 16

GNU Parallel

The sshlogin '.." is special, it read sshlogins from ~/.parallel/sshloginfile
The sshlogin -' is special, too, it read sshlogins from stdin (standard input).

To specify more sshlogins separate the sshlogins by comma or repeat the options
multiple times.

For examples: see --sshloginfile.

The remote host must have GNU parallel installed.

--sshlogin is known to cause problems with -m and -X.

--sshlogin is often used with --transfer, --return, --cleanup, and --trc.

--sshloginfile filename

--slf filename

--noswap

--silent

File with sshlogins. The file consists of sshlogins on separate lines. Empty lines and
lines starting with '#' are ignored. Example:

server .example.com

username@server2._example.com

8/my-8-core-server.example.com

2/my_other_username@my-dualcore.example.net

This server has SSH running on port 2222

ssh -p 2222 server._.example_net

4/ssh -p 2222 quadserver .example._net

Use a different ssh program

myssh -p 2222 -1 myusername hexacpu.example.net

Use a different ssh program with default number of cores

//usr/local/bin/myssh -p 2222 -1 myusername
hexacpu.example.net

Use a different ssh program with 6 cores

6//usr/local/bin/myssh -p 2222 -1 myusername
hexacpu.example.net

Assume 16 cores on the local computer

16/:

When using a different ssh program the last argument must be the hostname.
Multiple --sshloginfile are allowed.

GNU parallel will first look for the file in current dir; if that fails it look for the file in
~/.parallel.

The sshloginfile ".." is special, it read sshlogins from ~/.parallel/sshloginfile
The sshloginfile "." is special, it read sshlogins from /etc/parallel/sshloginfile
The sshloginfile '-' is special, too, it read sshlogins from stdin (standard input).

Do not start new jobs on a given computer if there is both swap-in and swap-out
activity.

The swap activity is only sampled every 10 seconds as the sampling takes 1 second
to do.

Swap activity is computed as (swap-in)*(swap-out) which in practice is a good value:
swapping out is not a problem, swapping in is not a problem, but both swapping in
and out usually indicates a problem.

Silent. The job to be run will not be printed. This is the default. Can be reversed with
-v.

Page 17

GNU Parallel

—tty

--tag

--tagstring str

Open terminal tty. If GNU parallel is used for starting an interactive program then
this option may be needed. It will start only one job at a time (i.e. -j1), not buffer the
output (i.e. -u), and it will open a tty for the job. When the job is done, the next job
will get the tty.

Tag lines with arguments. Each output line will be prepended with the arguments
and TAB (\t). When combined with --onall or --nonall the lines will be prepended
with the sshlogin instead.

--tag is ignored when using -u.

Tag lines with a string. Each output line will be prepended with str and TAB (\t). str
can contain replacement strings such as {}.

--tagstring is ignored when using -u, --onall, and --nonall.

--tmpdir dirname

--timeout val

--verbose
-t

--transfer

--trc filename

Directory for temporary files. GNU parallel normally buffers output into temporary
files in /tmp. By setting --tmpdir you can use a different dir for the files. Setting
--tmpdir is equivalent to setting $TMPDIR.

Time out for command. If the command runs for longer than val seconds it will get
killed with SIGTERM, followed by SIGTERM 200 ms later, followed by SIGKILL 200
ms later.

If val is followed by a % then the timeout will dynamically be computed as a
percentage of the median average runtime. Only values > 100% will make sense.

Print the job to be run on stderr (standard error).
See also -v, -p.

Transfer files to remote computers. --transfer is used with --sshlogin when the
arguments are files and should be transferred to the remote computers. The files will
be transferred using rsync and will be put relative to the default work dir. If the path
contains /./ the remaining path will be relative to the work dir. E.g.

echo foo/bar.txt | parallel \
--sshlogin server.example.com --transfer wc

This will transfer the file foo/bar.txt to the computer server.example.com to the file
$HOME/foo/bar.txt before running wc foo/bar.txt on server.example.com.

echo /tmp/foo/bar.txt | parallel \
--sshlogin server.example.com --transfer wc

This will transfer the file foo/bar.txt to the computer server.example.com to the file
/tmp/foo/bar.txt before running wc /tmp/foo/bar.txt on server.example.com.

--transfer is often used with --return and --cleanup.
--transfer is ignored when used with --sshlogin : or when not used with --sshlogin.

Transfer, Return, Cleanup. Short hand for:

Page 18

GNU Parallel

--trim <n|l|r|lr|r]>

--ungroup
-u

--transfer --return filename --cleanup

Trim white space in input.
n
No trim. Input is not modified. This is the default.

Left trim. Remove white space from start of input. E.g. "a bc " ->"a bc "

Right trim. Remove white space from end of input. E.g. "a bc " ->" a bc".

rl

Both trim. Remove white space from both start and end of input. E.g. "a bc "
->"a bc". This is the default if --colsep is used.

Ungroup output. Output is printed as soon as possible and by passes GNU parallel
internal processing. This may cause output from different commands to be mixed
thus should only be used if you do not care about the output. Compare these:

parallel -jO 'sleep {};echo -n start{};sleep {};echo {}end'::: 1234
parallel -u -jO 'sleep {};echo -n start{};sleep {};echo {}end' ::: 1234

It also disables --tag. GNU parallel runs faster with -u. Can be reversed with
--group.

--extensionreplace replace-str

--er replace-str

Use the replacement string replace-str instead of {.} for input line without extension.

--use-cpus-instead-of-cores

--version
-V

--workdir mydir
--wd mydir

Count the number of physical CPUs instead of CPU cores. When computing how
many jobs to run simultaneously relative to the number of CPU cores you can ask
GNU parallel to instead look at the number of physical CPUs. This will make sense
for computers that have hyperthreading as two jobs running on one CPU with
hyperthreading will run slower than two jobs running on two physical CPUs. Some
multi-core CPUs can run faster if only one thread is running per physical CPU. Most
users will not need this option.

Verbose. Print the job to be run on stdout (standard output). Can be reversed with
--silent. See also -t.

Use -v -v to print the wrapping ssh command when running remotely.

Print the version GNU parallel and exit.

Files transferred using --transfer and --return will be relative to mydir on remote

Page 19

GNU Parallel

computers, and the command will be executed in the dir mydir.

The special mydir value ... will create working dirs under ~/.parallel/tmp/ on the
remote computers. If --cleanup is given these dirs will be removed.

The special mydir value . uses the current working dir. If the current working dir is
beneath your home dir, the value . is treated as the relative path to your home dir.
This means that if your home dir is different on remote computers (e.qg. if your login is
different) the relative path will still be relative to your home dir.

To see the difference try:

parallel -S server pwd :::

parallel --wd . -S server pwd :::

parallel --wd ... -S server pwd :::

--wait
Wait for all commands to complete.
Implies --semaphore.
See also man sem.

Multiple arguments with context replace. Insert as many arguments as the command
line length permits. If multiple jobs are being run in parallel: distribute the arguments
evenly among the jobs. Use -j1 to avoid this.

If {} is not used the arguments will be appended to the line. If {} is used as part of a
word (like pic{}.jpg) then the whole word will be repeated. If {} is used multiple times
each {} will be replaced with the arguments.

Normally -X will do the right thing, whereas -m can give unexpected results if {} is
used as part of a word.

Support for -X with --sshlogin is limited and may fail.
See also -m.

--exit

Exit if the size (see the -s option) is exceeded.

--xapply
Read multiple input sources like xapply. If multiple input sources are given, one
argument will be read from each of the input sources. The arguments can be
accessed in the command as {1} .. {n}, so {1} will be a line from the first input
source, and {6} will refer to the line with the same line number from the 6th input
source.

Compare these two:

parallel echo {1} {2} ::: 12 3 ::: abc
parallel --xapply echo {1} {2} ::: 1 2 3 ::z abc

Arguments will be recycled if one input source has more arguments than the others:

parallel --xapply echo {1} {2} {3} z:: 1 2 z:z:- 1 11 111
abcdefg

See also --header.

EXAMPLE: Working as xargs -nl. Argument appending
GNU parallel can work similar to xargs -n1.

Page 20

GNU Parallel

To compress all html files using gzip run:
find . -name "*.html’ | parallel gzip --best

If the file names may contain a newline use -0. Substitute FOO BAR with FUBAR in all files in this dir
and subdirs:

find . -type f -print0 | parallel -q0 perl -i -pe 's/[FOO BAR/FUBAR/g'
Note -q is needed because of the space in 'FOO BAR'.

EXAMPLE: Reading arguments from command line

GNU parallel can take the arguments from command line instead of stdin (standard input). To
compress all html files in the current dir using gzip run:

parallel gzip --best ::: *.html
To convert *.wav to *.mp3 using LAME running one process per CPU core run;
parallel lame {} -o {.}.mp3 ::: *.wav

EXAMPLE: Inserting multiple arguments
When moving a lot of files like this: mv *.log destdir you will sometimes get the error:

bash: /bin/mv: Argument list too long
because there are too many files. You can instead do:
Is | grep -E ‘\.log$' | parallel mv {} destdir

This will run mv for each file. It can be done faster if mv gets as many arguments that will fit on the
line:

Is | grep -E "\.log$' | parallel -m mv {} destdir

EXAMPLE: Context replace
To remove the files pict0000.jpg .. pict9999.jpg you could do:

seq -w 0 9999 | parallel rm pict{}.jpg
You could also do:
seq -w 0 9999 | perl -pe 's/(.*)/pict$l.jpg/ | parallel -m rm

The first will run rm 10000 times, while the last will only run rm as many times needed to keep the
command line length short enough to avoid Argument list too long (it typically runs 1-2 times).

You could also run:
seq -w 0 9999 | parallel -X rm pict{}.jpg
This will also only run rm as many times needed to keep the command line length short enough.

EXAMPLE: Compute intensive jobs and substitution
If ImageMagick is installed this will generate a thumbnail of a jpg file:

convert -geometry 120 foo.jpg thumb_foo.jpg

This will run with number-of-cpu-cores jobs in parallel for all jpg files in a directory:
Is *.jpg | parallel convert -geometry 120 {} thumb_{}

To do it recursively use find:

find . -name "*.jpg’' | parallel convert -geometry 120 {} {} thumb.jpg

Page 21

GNU Parallel

Notice how the argument has to start with {} as {} will include path (e.g. running convert -geometry
120 ./foo/bar.jpg thumb_./foo/bar.jpg would clearly be wrong). The command will generate files like
Jfoo/bar.jpg_thumb.jpg.

Use {.} to avoid the extra .jpg in the file name. This command will make files like ./foo/bar_thumb.jpg:
find . -name ".jpg' | parallel convert -geometry 120 {} {.}_thumb.jpg

EXAMPLE: Substitution and redirection
This will generate an uncompressed version of .gz-files next to the .gz-file:

parallel zcat {} ">"{.} ::: *.gz

Quoting of > is necessary to postpone the redirection. Another solution is to quote the whole
command:

parallel "zcat {} >{.}" ::: *.0z

Other special shell characters (such as * ; $ > < | >> <<) also need to be put in quotes, as they may
otherwise be interpreted by the shell and not given to GNU parallel.

EXAMPLE: Composed commands
A job can consist of several commands. This will print the number of files in each directory:

Is | parallel ‘echo -n {}" *'; Is {}]wc -I'

To put the output in a file called <name>.dir:

Is | parallel ‘(echo -n {}"" "; Is {}jwc -I) > {}.dir"
Even small shell scripts can be run by GNU parallel:

find . | parallel 'a={}; name=${a##*/}; upper=$(echo "$name" | tr "[:lower:]" "[:upper:]"); echo
"$name - Supper™

Is | parallel ‘mv {} "$(echo {} | tr "[:upper:]" "[:lower:]")™"

Given a list of URLS, list all URLs that fail to download. Print the line number and the URL.
cat urlfile | parallel "wget {} 2>/dev/null || grep -n {} urlfile”

Create a mirror directory with the same filenames except all files and symlinks are empty files.
cp -rs /the/source/dir mirror_dir; find mirror_dir -type | | parallel -m rm {} '&&' touch {}
Find the files in a list that do not exist

cat file_list | parallel 'if [! -e {}] ; then echo {}; fi'

EXAMPLE: Calling Bash functions

If the composed command is longer than a line, it becomes hard to read. In Bash you can use
functions. Just remember to export -f the function.

doit({
echo Doing it for $1
sleep 2
echo Done with $1

}

export -f doit

parallel doit ::: 1 2 3

doubleit({
echo Doing it for $1 $2

Page 22

GNU Parallel

sleep 2
echo Done with $1 $2

}
export -f doubleit

parallel doubleit ::: 12 3 :::z ab
To do this on remote servers you need to transfer the function using --env:
parallel --env doit -S server doit ::: 12 3

parallel --env doubleit -S server doubleit ::: 1 2 3 ::: ab

EXAMPLE: Removing file extension when processing files
When processing files removing the file extension using {.} is often useful.

Create a directory for each zip-file and unzip it in that dir:

parallel 'mkdir {.}; cd {.}; unzip ..{}' ::: *.zip

Recompress all .gz files in current directory using bzip2 running 1 job per CPU core in parallel:
parallel "zcat {} | bzip2 >{.}.bz2 && rm {}" ::: *.0z

Convert all WAV files to MP3 using LAME:

find sounddir -type f -name "*.wav' | parallel lame {} -o {.}.mp3

Put all converted in the same directory:

find sounddir -type f -name "*.wav' | parallel lame {} -o mydir/{/.}.mp3

EXAMPLE: Removing two file extensions when processing files and calling GNU
Parallel from itself

If you have directory with tar.gz files and want these extracted in the corresponding dir (e.g foo.tar.gz
will be extracted in the dir foo) you can do:

Is *.tar.gz| parallel --er {tar} ‘echo {tar}|parallel "mkdir -p {.} ; tar -C {.} -xf {.}.tar.gz"™

EXAMPLE: Download 10 images for each of the past 30 days
Let us assume a website stores images like:

http://www.example.com/path/to/YYYYMMDD_##. jpg
where YYYYMMDD is the date and ## is the number 01-10. This will download images for the past 30
days:

parallel wget http://www.example.com/path/to/'$(date -d "today -{1} days" +%Y%m%d)_{2}.jpg'
;12 $(seq 30) ::: $(seq -w 10)

$(date -d "today -{1} days" +%Y%m%d) will give the dates in YYYYMMDD with {1} days subtracted.

EXAMPLE: Breadth first parallel web crawler/mirrorer

This script below will crawl and mirror a URL in parallel. It downloads first pages that are 1 click down,
then 2 clicks down, then 3; instead of the normal depth first, where the first link link on each page is
fetched first.

Run like this:
PARALLEL=-j100 ./parallel-crawl http://gatt.org.yeslab.org/

Remove the wget part if you only want a web crawler.

Page 23

GNU Parallel

It works by fetching a page from a list of URLs and looking for links in that page that are within the
same starting URL and that have not already been seen. These links are added to a new queue.
When all the pages from the list is done, the new queue is moved to the list of URLs and the process
is started over until no unseen links are found.

#1/bin/bash

E.g. http://gatt.org.yeslab.org/

URL=%1

Stay inside the start dir

BASEURL=%$(echo $URL | perl -pe "s:#.*::; s:(//.*/)[]*:%$1:7)
URLLIST=$(mktemp urllist.XXXX)

URLLIST2=$(mktemp urllist.XXXX)

SEEN=$(mktemp seen.XXXX)

Spider to get the URLs
echo $URL >$URLLIST
cp $URLLIST $SEEN

while [-s $URLLIST] ; do
cat SURLLIST |
parallel lynx -listonly -image links -dump {} \; wget -gm -11 -Q1 {}
\; echo Spidered: {} \>\&2 |
perl -ne "s/#.*//; s/\s+t\d+_.\s(\S+)$/$1/ and do { $seen{$1}++ or
print }- |
grep -F $BASEURL |
grep -v -x -F -f $SEEN | tee -a $SEEN > $URLLIST2
mv $URLLIST2 $URLLIST
done

rm —f $URLLIST $URLLIST2 $SEEN

EXAMPLE: Process files from a tar file while unpacking

If the files to be processed are in a tar file then unpacking one file and processing it immediately may
be faster than first unpacking all files.

tar xvf foo.tgz | perl -ne 'print $1;$1=$_;END{print $I}' | parallel echo
The Perl one-liner is needed to avoid race condition.

EXAMPLE: Rewriting a for-loop and a while-read-loop
for-loops like this:

(for x In “cat list™ ; do
do_something $x
done) | process_output

and while-read-loops like this:

cat list | (while read x ; do
do_something $x
done) | process_output

can be written like this:

cat list | parallel do_something | process_output

Page 24

GNU Parallel

For example: Find which host name in a list has IP address 1.2.3 4:
cat hosts.txt | parallel -P 100 host | grep 1.2.3.4
If the processing requires more steps the for-loop like this:

(for x in “cat list® ; do
no_extension=${x%.*%};
do_something $x scale $no_extension. jpg
do_step2 <$x $no_extension

done) | process_output

and while-loops like this:

cat list | (while read x ; do
no_extension=${x%.*%};
do_something $x scale $no_extension. jpg
do_step2 <$x $no_extension

done) | process_output

can be written like this:
cat list | parallel "do_something {} scale {.}.jpg ; do_step2 <{} {.}"' | process_output

EXAMPLE: Rewriting nested for-loops
Nested for-loops like this:

(for x in “cat xlist™ ; do
for y in “cat ylist® ; do
do_something $x $y
done
done) | process_output

can be written like this:
parallel do_something {1} {2} :::: xlist ylist | process_output
Nested for-loops like this:

(for gender in M F ; do
for size in S ML XL XXL ; do
echo $gender $size
done
done) | sort

can be written like this:
parallel echo {1} {2} ::: M F ::: S M L XL XXL | sort

EXAMPLE: Finding the lowest difference between files

diff is good for finding differences in text files. diff | wc -1 gives an indication of the size of the
difference. To find the differences between all files in the current dir do:

parallel --tag 'diff {1} {2} | wc -I" ::: * ;2 * | sort -nk3
This way it is possible to see if some files are closer to other files.

EXAMPLE: for-loops with column names

When doing multiple nested for-loops it can be easier to keep track of the loop variable if is is named
instead of just having a number. Use --header : to let the first argument be an named alias for the

Page 25

GNU Parallel

positional replacement string:

parallel --header : echo {gender} {size} ::: gender M F ::: size S ML XL
XXL

This also works if the input file is a file with columns:

cat addressbook.tsv | parallel --colsep "\t" --header : echo {Name}
{E-mail address}

EXAMPLE: Count the differences between all files in a dir
Using --results the results are saved in /tmp/diffcount*.

parallel --results /tmp/diffcount "diff -U 0 {1} {2} |tail -n +3 |grep -v
e jwe -0 oDiio*orIoox

To see the difference between file A and file B look at the file 'tmp/diffcount 1 A 2 B' where spaces
are TABs (\t).

EXAMPLE: Speeding up fast jobs

Starting a job on the local machine takes around 3 ms. This can be a big overhead if the job takes
very few ms to run. Often you can group small jobs together using -X which will make the overhead
less significant. Compare the speed of these:

seq -w 0 9999 | parallel touch pict{}-jpg
seq -w 0 9999 | parallel -X touch pict{}-jpg

If your program cannot take multiple arguments, then you can use GNU parallel to spawn multiple
GNU parallels:

seq -w 0 999999 | parallel -jl10 --pipe parallel -jO touch pict{}-jpg

If -jO0 normally spawns 506 jobs, then the above will try to spawn 5060 jobs. It is likely that you this
way will hit the limit of number of processes and/or filehandles. Look at ‘ulimit -n" and ‘ulimit -u' to raise
these limits.

EXAMPLE: Using shell variables

When using shell variables you need to quote them correctly as they may otherwise be split on
spaces.

Notice the difference between:

V=("My brother®s 12\" records are worth <\$\$\$>""1" Foo Bar)
parallel echo ::: ${V[@]} # This is probably not what you want

and:

V="My brother®s 12\" records are worth <\$\$\$>""1" Foo Bar)
parallel echo ::: "${V[@]}"

When using variables in the actual command that contains special characters (e.g. space) you can
quote them using "'$VAR'" or using "'s and -q:

V=""Here are two "
parallel echo ""$V"" ::: spaces
parallel -q echo "$V" ::: spaces

Page 26

GNU Parallel

EXAMPLE: Group output lines

When running jobs that output data, you often do not want the output of multiple jobs to run together.
GNU parallel defaults to grouping the output of each job, so the output is printed when the job
finishes. If you want the output to be printed while the job is running you can use -u.

Compare the output of:

parallel traceroute ::: foss.org.my debian.org freenetproject.org

to the output of:

parallel -u traceroute ::: foss.org.my debian.org freenetproject.org

EXAMPLE: Tag output lines

GNU parallel groups the output lines, but it can be hard to see where the different jobs begin. --tag
prepends the argument to make that more visible:

parallel --tag traceroute ::: foss.org.my debian.org freenetproject.org
Check the uptime of the servers in ~/.parallel/sshloginfile:
parallel --tag -S .. --nonall uptime

EXAMPLE: Keep order of output same as order of input

Normally the output of a job will be printed as soon as it completes. Sometimes you want the order of
the output to remain the same as the order of the input. This is often important, if the output is used as
input for another system. -k will make sure the order of output will be in the same order as input even
if later jobs end before earlier jobs.

Append a string to every line in a text file:

cat textfile | parallel -k echo {} append_string

If you remo