
GNU Parallel

Page 1

NAME
parallel - build and execute shell command lines from standard input in parallel

SYNOPSIS
parallel [options] [command [arguments]] < list_of_arguments

parallel [options] [command [arguments]] (::: arguments | :::: argfile(s)) ...

parallel --semaphore [options] command

#!/usr/bin/parallel --shebang [options] [command [arguments]]

DESCRIPTION
GNU parallel is a shell tool for executing jobs in parallel using
 one or more computers. A job can be a
single command or a small
 script that has to be run for each of the lines in the input. The
 typical input
is a list of files, a list of hosts, a list of users, a
 list of URLs, or a list of tables. A job can also be a
command that
 reads from a pipe. GNU parallel can then split the input into
 blocks and pipe a block
into each command in parallel.

If you use xargs and tee today you will find GNU parallel very easy to
 use as GNU parallel is written
to have the same options as xargs. If
 you write loops in shell, you will find GNU parallel may be able
to
 replace most of the loops and make them run faster by running several
 jobs in parallel.

GNU parallel makes sure output from the commands is the same output as
 you would get had you
run the commands sequentially. This makes it
 possible to use output from GNU parallel as input for
other programs.

For each line of input GNU parallel will execute command with
 the line as arguments. If no command
is given, the line of input is
 executed. Several lines will be run in parallel. GNU parallel can
 often be
used as a substitute for xargs or cat | bash.

Reader's guide
Start by watching the intro videos for a quick introduction:

http://www.youtube.com/playlist?list=PL284C9FF2488BC6D1

Then look at the EXAMPLEs after the list of OPTIONS. That will
 give you an idea of what GNU
parallel is capable of.

Then spend an hour walking through the tutorial (man
 parallel_tutorial). Your command line will love
you for it.

Finally you may want to look at the rest of this manual if you have
 special needs not already covered.

OPTIONS
command

Command to execute. If command or the following arguments contain
 replacement
strings (such as {}) every instance will be substituted
 with the input.

If command is given, GNU parallel solve the same tasks as xargs. If command is
not given GNU parallel will behave
 similar to cat | sh.

The command must be an executable, a script, a composed command, or
 a function.

If it is a Bash function you need to export -f the
 function first. An alias will, however,
not work (see why
 http://www.perlmonks.org/index.pl?node_id=484296).

If it is a zsh function you will need to use this helper function exportf to export and to
set $SHELL to bash:

 function exportf (){
 export $(echo $1)="`whence -f $1 | sed -e "s/$1 //" `"
 }

GNU Parallel

Page 2

 function my_func(){
 echo $1;
 echo "hello";
 }

 exportf my_func
 SHELL=/bin/bash parallel "my_func {}" ::: 1 2

{}

Input line. This replacement string will be replaced by a full line
 read from the input
source. The input source is normally stdin
 (standard input), but can also be given
with -a, :::, or ::::.

The replacement string {} can be changed with -I.

If the command line contains no replacement strings then {} will be
 appended to the
command line.

{.}

Input line without extension. This replacement string will be replaced
 by the input
with the extension removed. If the input line contains . after the last / the last . till the
end of the string will
 be removed and {.} will be replaced with the
 remaining. E.g.
foo.jpg becomes foo, subdir/foo.jpg becomes subdir/foo, sub.dir/foo.jpg becomes
sub.dir/foo, sub.dir/bar remains sub.dir/bar. If the input line does not
 contain . it will
remain unchanged.

The replacement string {.} can be changed with --er.

To understand replacement strings see {}.

{/}

Basename of input line. This replacement string will be replaced by
 the input with the
directory part removed.

The replacement string {/} can be changed with --basenamereplace.

To understand replacement strings see {}.

{//}

Dirname of input line. This replacement string will be replaced by the
 dir of the input
line. See dirname(1).

The replacement string {//} can be changed with --dirnamereplace.

To understand replacement strings see {}.

{/.}

Basename of input line without extension. This replacement string will
 be replaced
by the input with the directory and extension part
 removed. It is a combination of {/}
and {.}.

The replacement string {/.} can be changed with --basenameextensionreplace.

To understand replacement strings see {}.

{#}

Sequence number of the job to run. This replacement string will be
 replaced by the
sequence number of the job being run. It contains the
 same number as
$PARALLEL_SEQ.

The replacement string {#} can be changed with --seqreplace.

To understand replacement strings see {}.

{%} (alpha testing)

GNU Parallel

Page 3

Job slot number. This replacement string will be replaced by the job's
 slot number
between 1 and number of jobs to run in parallel. There
 will never be 2 jobs running at
the same time with the same job slot
 number.

The replacement string {%} can be changed with --slotreplace.

To understand replacement strings see {}.

{n}

Argument from input source n or the n'th argument. This
 positional replacement
string will be replaced by the input from input
 source n (when used with -a or ::::) or
with the n'th
 argument (when used with -N). If n is negative it refers to the n'th last
argument.

To understand replacement strings see {}.

{n.}

Argument from input source n or the n'th argument without
 extension. It is a
combination of {n} and {.}.

This positional replacement string will be replaced by the input from
 input source n
(when used with -a or ::::) or with the n'th argument (when used with -N). The input
will have the
 extension removed.

To understand positional replacement strings see {n}.

{n/}

Basename of argument from input source n or the n'th argument.
 It is a combination
of {n} and {/}.

This positional replacement string will be replaced by the input from
 input source n
(when used with -a or ::::) or with the n'th argument (when used with -N). The input
will have the
 directory (if any) removed.

To understand positional replacement strings see {n}.

{n//}

Dirname of argument from input source n or the n'th argument.
 It is a combination of
{n} and {//}.

This positional replacement string will be replaced by the dir of the
 input from input
source n (when used with -a or ::::) or with
 the n'th argument (when used with -N).
See dirname(1).

To understand positional replacement strings see {n}.

{n/.}

Basename of argument from input source n or the n'th argument
 without extension. It
is a combination of {n}, {/}, and {.}.

This positional replacement string will be replaced by the input from
 input source n
(when used with -a or ::::) or with the n'th argument (when used with -N). The input
will have the
 directory (if any) and extension removed.

To understand positional replacement strings see {n}.

::: arguments

Use arguments from the command line as input source instead of stdin
 (standard
input). Unlike other options for GNU parallel ::: is
 placed after the command and
before the arguments.

The following are equivalent:

 (echo file1; echo file2) | parallel gzip
 parallel gzip ::: file1 file2
 parallel gzip {} ::: file1 file2

GNU Parallel

Page 4

 parallel --arg-sep ,, gzip {} ,, file1 file2
 parallel --arg-sep ,, gzip ,, file1 file2
 parallel ::: "gzip file1" "gzip file2"

To avoid treating ::: as special use --arg-sep to set the
 argument separator to
something else. See also --arg-sep.

stdin (standard input) will be passed to the first process run.

If multiple ::: are given, each group will be treated as an input
 source, and all
combinations of input sources will be
 generated. E.g. ::: 1 2 ::: a b c will result in the
combinations
 (1,a) (1,b) (1,c) (2,a) (2,b) (2,c). This is useful for replacing
 nested
for-loops.

::: and :::: can be mixed. So these are equivalent:

 parallel echo {1} {2} {3} ::: 6 7 ::: 4 5 ::: 1 2 3
 parallel echo {1} {2} {3} :::: <(seq 6 7) <(seq 4 5) ::::
<(seq 1 3)
 parallel -a <(seq 6 7) echo {1} {2} {3} :::: <(seq 4 5) ::::
 <(seq 1 3)
 parallel -a <(seq 6 7) -a <(seq 4 5) echo {1} {2} {3} ::: 1
2 3
 seq 6 7 | parallel -a - -a <(seq 4 5) echo {1} {2} {3} ::: 1
 2 3
 seq 4 5 | parallel echo {1} {2} {3} :::: <(seq 6 7) - ::: 1
2 3

:::: argfiles

Another way to write -a argfile1 -a argfile2 ...

::: and :::: can be mixed.

See -a, ::: and --xapply.

--null

-0

Use NUL as delimiter. Normally input lines will end in \n
 (newline). If they end in \0
(NUL), then use this option. It is useful
 for processing arguments that may contain \n
(newline).

--arg-file input-file

-a input-file

Use input-file as input source. If you use this option, stdin
 (standard input) is given to
the first process run. Otherwise, stdin
 (standard input) is redirected from /dev/null.

If multiple -a are given, each input-file will be treated as an
 input source, and all
combinations of input sources will be
 generated. E.g. The file foo contains 1 2, the
file bar
 contains a b c. -a foo -a bar will result in the combinations
 (1,a) (1,b) (1,c)
(2,a) (2,b) (2,c). This is useful for replacing
 nested for-loops.

See also --xapply and {n}.

--arg-file-sep sep-str

Use sep-str instead of :::: as separator string between command
 and argument files.
Useful if :::: is used for something else by the
 command.

See also: ::::.

--arg-sep sep-str

Use sep-str instead of ::: as separator string. Useful if :::
 is used for something else
by the command.

GNU Parallel

Page 5

Also useful if you command uses ::: but you still want to read
 arguments from stdin
(standard input): Simply change --arg-sep to a
 string that is not in the command line.

See also: :::.

--bar

Show progress as a progress bar. In the bar is shown: % of jobs
 completed,
estimated seconds left, and number of jobs started.

It is compatible with zenity:

seq 1000 | parallel -j30 --bar '(echo {};sleep 0.1)' 2> >(zenity --progress --auto-kill) |
wc

--basefile file

--bf file

file will be transferred to each sshlogin before a jobs is
 started. It will be removed if
--cleanup is active. The file may be
 a script to run or some common base data
needed for the jobs.
 Multiple --bf can be specified to transfer more basefiles. The file
will be transferred the same way as --transfer.

--basenamereplace replace-str

--bnr replace-str

Use the replacement string replace-str instead of {/} for
 basename of input line.

--basenameextensionreplace replace-str

--bner replace-str

Use the replacement string replace-str instead of {/.} for basename of input line
without extension.

--bg

Run command in background thus GNU parallel will not wait for
 completion of the
command before exiting. This is the default if --semaphore is set.

See also: --fg, man sem.

Implies --semaphore.

--bibtex

Print the BibTeX entry for GNU parallel and disable citation
 notice.

--block size

--block-size size

Size of block in bytes. The size can be postfixed with K, M, G, T, P,
 k, m, g, t, or p
which would multiply the size with 1024, 1048576,
 1073741824, 1099511627776,
1125899906842624, 1000, 1000000,
 1000000000, 1000000000000, or
1000000000000000 respectively.

GNU parallel tries to meet the block size but can be off by the
 length of one record.
For performance reasons size should be bigger
 than a single record.

size defaults to 1M.

See --pipe for use of this.

--cat (beta testing)

Create a temporary file with content. Normally --pipe will give
 data to the program on
stdin (standard input). With --cat GNU parallel will create a temporary file with the
name in {}, so you
 can do: parallel --pipe --cat wc {}.

See also --fifo.

GNU Parallel

Page 6

--cleanup

Remove transferred files. --cleanup will remove the transferred files
 on the remote
computer after processing is done.

 find log -name '*gz' | parallel \
 --sshlogin server.example.com --transfer --return {.}.bz2
\
 --cleanup "zcat {} | bzip -9 >{.}.bz2"

With --transfer the file transferred to the remote computer will be
 removed on the
remote computer. Directories created will not be removed
 - even if they are empty.

With --return the file transferred from the remote computer will be
 removed on the
remote computer. Directories created will not be removed
 - even if they are empty.

--cleanup is ignored when not used with --transfer or --return.

--colsep regexp

-C regexp

Column separator. The input will be treated as a table with regexp
 separating the
columns. The n'th column can be access using {n} or {n.}. E.g. {3} is the 3rd column.

--colsep implies --trim rl.

regexp is a Perl Regular Expression:
 http://perldoc.perl.org/perlre.html

--compress

Compress temporary files. If the output is big and very compressible
 this will take up
less disk space in $TMPDIR and possibly be faster due to less
 disk I/O.

GNU parallel will try lzop, pigz, gzip, pbzip2, plzip, bzip2, lzma, lzip, xz in that
order, and use the
 first available.

--compress-program prg

--decompress-program prg

Use prg for (de)compressing temporary files. It is assumed that prg
 -dc will
decompress stdin (standard input) to stdout (standard
 output) unless
--decompress-program is given.

--ctrlc

Sends SIGINT to tasks running on remote computers thus killing them.

--delimiter delim

-d delim

Input items are terminated by the specified character. Quotes and
 backslash are not
special; every character in the input is taken
 literally. Disables the end-of-file string,
which is treated like any
 other argument. This can be used when the input consists
of simply
 newline-separated items, although it is almost always better to design
 your
program to use --null where this is possible. The specified
 delimiter may be a single
character, a C-style character escape such
 as \n, or an octal or hexadecimal escape
code. Octal and
 hexadecimal escape codes are understood as for the printf
command.
 Multibyte characters are not supported.

--dirnamereplace replace-str

--dnr replace-str

Use the replacement string replace-str instead of {//} for
 dirname of input line.

-E eof-str

Set the end of file string to eof-str. If the end of file string
 occurs as a line of input, the

GNU Parallel

Page 7

rest of the input is ignored. If
 neither -E nor -e is used, no end of file string is used.

--delay secs

Delay starting next job secs seconds. GNU parallel will pause secs seconds after
starting each job. secs can be less than 1
 seconds.

--dry-run

Print the job to run on stdout (standard output), but do not run the
 job. Use -v -v to
include the ssh/rsync wrapping if the job would
 be run on a remote computer. Do not
count on this literaly, though, as
 the job may be scheduled on another computer or
the local computer if
 : is in the list.

--eof[=eof-str]

-e[eof-str]

This option is a synonym for the -E option. Use -E instead,
 because it is POSIX
compliant for xargs while this option is not.
 If eof-str is omitted, there is no end of file
string. If neither -E nor -e is used, no end of file string is used.

--env var

Copy environment variable var. This will copy var to the
 environment that the
command is run in. This is especially useful for
 remote execution.

In Bash var can also be a Bash function - just remember to export
 -f the function,
see command.

The variable '_' is special. It will copy all enviroment variables
 except for the ones
mentioned in ~/.parallel/ignored_vars.

See also: --record-env.

--eta

Show the estimated number of seconds before finishing. This forces GNU parallel to
read all jobs before starting to find the number of
 jobs. GNU parallel normally only
reads the next job to run.
 Implies --progress.

--fg

Run command in foreground thus GNU parallel will wait for
 completion of the
command before exiting.

See also --bg, man sem.

Implies --semaphore.

--fifo (beta testing)

Create a temporary fifo with content. Normally --pipe will give
 data to the program on
stdin (standard input). With --fifo GNU parallel will create a temporary fifo with the
name in {}, so you
 can do: parallel --pipe --fifo wc {}.

Beware: If data is not read from the fifo, the job will block forever.

See also --cat.

--filter-hosts

Remove down hosts. For each remote host: check that login through ssh
 works. If
not: do not use this host.

Currently you can not put --filter-hosts in a profile,
 $PARALLEL, /etc/parallel/config
or similar. This is because GNU parallel uses GNU parallel to compute this, so you
will get an
 infinite loop. This will likely be fixed in a later release.

--gnu

Behave like GNU parallel. If --tollef and --gnu are both set, --gnu takes

GNU Parallel

Page 8

precedence. --tollef is retired, but --gnu is
 kept for compatibility.

--group

Group output. Output from each jobs is grouped together and is only
 printed when
the command is finished. stderr (standard error) first
 followed by stdout (standard
output). This takes some CPU time. In
 rare situations GNU parallel takes up lots of
CPU time and if it is
 acceptable that the outputs from different commands are mixed

together, then disabling grouping with -u can speedup GNU parallel by a factor of
10.

--group is the default. Can be reversed with -u.

See also: --line-buffer --ungroup

--help

-h

Print a summary of the options to GNU parallel and exit.

--halt-on-error <0|1|2>

--halt <0|1|2>

0 Do not halt if a job fails. Exit status will be the number of jobs
 failed. This is the
default.

1 Do not start new jobs if a job fails, but complete the running jobs
 including
cleanup. The exit status will be the exit status from the
 last failing job.

2 Kill off all jobs immediately and exit without cleanup. The exit
 status will be the
exit status from the failing job.

--header regexp

Use regexp as header. For normal usage the matched header (typically
 the first line:
--header '.*\n') will be split using --colsep
 (which will default to '\t') and column
names can be used as
 replacement variables: {column name}.

For --pipe the matched header will be prepended to each output.

--header : is an alias for --header '.*\n'.

If regexp is a number, it will match that many lines.

-I replace-str

Use the replacement string replace-str instead of {}.

--replace[=replace-str]

-i[replace-str]

This option is a synonym for -Ireplace-str if replace-str is
 specified, and for -I{}
otherwise. This option is deprecated;
 use -I instead.

--joblog logfile

Logfile for executed jobs. Save a list of the executed jobs to logfile in the following
TAB separated format: sequence number,
 sshlogin, start time as seconds since
epoch, run time in seconds,
 bytes in files transferred, bytes in files returned, exit
status,
 signal, and command run.

To convert the times into ISO-8601 strict do:

perl -a -F"\t" -ne 'chomp($F[2]=`date -d \@$F[2] +%FT%T`); print join("\t",@F)'

See also --resume.

--jobs N

-j N

GNU Parallel

Page 9

--max-procs N

-P N

Number of jobslots. Run up to N jobs in parallel. 0 means as many as
 possible.
Default is 100% which will run one job per CPU core.

If --semaphore is set default is 1 thus making a mutex.

--jobs +N

-j +N

--max-procs +N

-P +N

Add N to the number of CPU cores. Run this many jobs in parallel.
 See also
--use-cpus-instead-of-cores.

--jobs -N

-j -N

--max-procs -N

-P -N

Subtract N from the number of CPU cores. Run this many jobs in parallel.
 If the
evaluated number is less than 1 then 1 will be used. See also
--use-cpus-instead-of-cores.

--jobs N%

-j N%

--max-procs N%

-P N%

Multiply N% with the number of CPU cores. Run this many jobs in parallel.
 If the
evaluated number is less than 1 then 1 will be used. See also
--use-cpus-instead-of-cores.

--jobs procfile

-j procfile

--max-procs procfile

-P procfile

Read parameter from file. Use the content of procfile as parameter
 for -j. E.g. procfile
could contain the string 100% or +2 or
 10. If procfile is changed when a job
completes, procfile is
 read again and the new number of jobs is computed. If the
number is
 lower than before, running jobs will be allowed to finish but new jobs
 will
not be started until the wanted number of jobs has been reached.
 This makes it
possible to change the number of simultaneous running
 jobs while GNU parallel is
running.

--keep-order

-k

Keep sequence of output same as the order of input. Normally the
 output of a job will
be printed as soon as the job completes. Try this
 to see the difference:

 parallel -j4 sleep {}\; echo {} ::: 2 1 4 3
 parallel -j4 -k sleep {}\; echo {} ::: 2 1 4 3

If used with --onall or --nonall the output will grouped by
 sshlogin in sorted order.

-L max-lines

GNU Parallel

Page 10

When used with --pipe: Read records of max-lines.

When used otherwise: Use at most max-lines nonblank input lines per
 command
line. Trailing blanks cause an input line to be logically
 continued on the next input
line.

-L 0 means read one line, but insert 0 arguments on the command
 line.

Implies -X unless -m, --xargs, or --pipe is set.

--max-lines[=max-lines]

-l[max-lines]

When used with --pipe: Read records of max-lines.

When used otherwise: Synonym for the -L option. Unlike -L, the max-lines argument
is optional. If max-lines is not specified,
 it defaults to one. The -l option is deprecated
since the POSIX
 standard specifies -L instead.

-l 0 is an alias for -l 1.

Implies -X unless -m, --xargs, or --pipe is set.

--line-buffer (alpha testing)

Buffer output on line basis. --group will keep the output together
 for a whole job.
--ungroup allows output to mixup with half a line
 coming from one job and half a line
coming from another
 job. --line-buffer fits between these two: GNU parallel will
 print
a full line, but will allow for mixing lines of different jobs.

--line-buffer takes more CPU power than than both --group and --ungroup, but can
be faster than --group if the CPU is not the
 limiting factor.

See also: --group --ungroup

--load max-load

Do not start new jobs on a given computer unless the number of running
 processes
on the computer is less than max-load. max-load uses
 the same syntax as --jobs, so
100% for one per CPU is a valid
 setting. Only difference is 0 which is interpreted as
0.01.

--controlmaster (experimental)

-M (experimental)

Use ssh's ControlMaster to make ssh connections faster. Useful if jobs
 run remote
and are very fast to run. This is disabled for sshlogins
 that specify their own ssh
command.

--xargs

Multiple arguments. Insert as many arguments as the command line
 length permits.

If {} is not used the arguments will be appended to the
 line. If {} is used multiple
times each {} will be replaced
 with all the arguments.

Support for --xargs with --sshlogin is limited and may fail.

See also -X for context replace. If in doubt use -X as that will
 most likely do what is
needed.

-m

Multiple arguments. Insert as many arguments as the command line
 length permits.
If multiple jobs are being run in parallel: distribute
 the arguments evenly among the
jobs. Use -j1 to avoid this.

If {} is not used the arguments will be appended to the
 line. If {} is used multiple
times each {} will be replaced
 with all the arguments.

Support for -m with --sshlogin is limited and may fail.

GNU Parallel

Page 11

See also -X for context replace. If in doubt use -X as that will
 most likely do what is
needed.

--minversion version

Print the version GNU parallel and exit. If the current version of
 GNU parallel is less
than version the exit code is
 255. Otherwise it is 0.

This is useful for scripts that depend on features only available from
 a certain version
of GNU parallel.

--nonall

--onall with no arguments. Run the command on all computers given
 with --sshlogin
but take no arguments. GNU parallel will log
 into --jobs number of computers in
parallel and run the job on the
 computer. -j adjusts how many computers to log into
in parallel.

This is useful for running the same command (e.g. uptime) on a list of
 servers.

--onall

Run all the jobs on all computers given with --sshlogin. GNU parallel will log into
--jobs number of computers in parallel
 and run one job at a time on the computer.
The order of the jobs will
 not be changed, but some computers may finish before
others. -j
 adjusts how many computers to log into in parallel.

When using --group the output will be grouped by each server, so
 all the output from
one server will be grouped together.

--output-as-files

--outputasfiles

--files

Instead of printing the output to stdout (standard output) the output
 of each job is
saved in a file and the filename is then printed.

--pipe

--spreadstdin

Spread input to jobs on stdin (standard input). Read a block of data
 from stdin
(standard input) and give one block of data as input to one
 job.

The block size is determined by --block. The strings --recstart
 and --recend tell
GNU parallel how a record starts and/or
 ends. The block read will have the final
partial record removed before
 the block is passed on to the job. The partial record
will be
 prepended to next block.

If --recstart is given this will be used to split at record start.

If --recend is given this will be used to split at record end.

If both --recstart and --recend are given both will have to
 match to find a split
position.

If neither --recstart nor --recend are given --recend
 defaults to '\n'. To have no
record separator use --recend "".

--files is often used with --pipe.

See also: --recstart, --recend, --fifo, --cat, --pipepart.

--pipepart (alpha testing)

Pipe parts of a physical file. --pipepart works similar to --pipe, but is much faster. It
has a few limitations:

The file must be a physical (seekable) file and must be given using -a or ::::.

Record counting (-N) and line counting (-L) do not work.

GNU Parallel

Page 12

--plain

Ignore any --profile, $PARALLEL, and ~/.parallel/config to get full
 control on the
command line (used by GNU parallel internally when
 called with --sshlogin).

--progress

Show progress of computations. List the computers involved in the task
 with number
of CPU cores detected and the max number of jobs to
 run. After that show progress
for each computer: number of running
 jobs, number of completed jobs, and
percentage of all jobs done by
 this computer. The percentage will only be available
after all jobs
 have been scheduled as GNU parallel only read the next job when

ready to schedule it - this is to avoid wasting time and memory by
 reading everything
at startup.

By sending GNU parallel SIGUSR2 you can toggle turning on/off --progress on a
running GNU parallel process.

See also --eta.

--max-args=max-args

-n max-args

Use at most max-args arguments per command line. Fewer than max-args
arguments will be used if the size (see the -s option)
 is exceeded, unless the -x
option is given, in which case
 GNU parallel will exit.

-n 0 means read one argument, but insert 0 arguments on the command
 line.

Implies -X unless -m is set.

--max-replace-args=max-args

-N max-args

Use at most max-args arguments per command line. Like -n but
 also makes
replacement strings {1} .. {max-args} that
 represents argument 1 .. max-args. If too
few args the {n} will
 be empty.

-N 0 means read one argument, but insert 0 arguments on the command
 line.

This will set the owner of the homedir to the user:

tr ':' '\n' < /etc/passwd | parallel -N7 chown {1} {6}

Implies -X unless -m or --pipe is set.

When used with --pipe -N is the number of records to read. This
 is somewhat slower
than --block.

--max-line-length-allowed

Print the maximal number of characters allowed on the command line and
 exit (used
by GNU parallel itself to determine the line length
 on remote computers).

--number-of-cpus

Print the number of physical CPUs and exit (used by GNU parallel
 itself to
determine the number of physical CPUs on remote computers).

--number-of-cores

Print the number of CPU cores and exit (used by GNU parallel itself
 to determine
the number of CPU cores on remote computers).

--no-notice

Do not display citation notice. A citation notice is printed on stderr
 (standard error)
only if stderr (standard error) is a terminal, the
 user has not specified --no-notice,
and the user has not run --bibtex once.

GNU Parallel

Page 13

--nice niceness

Run the command at this niceness. For simple commands you can just add nice in
front of the command. But if the command consists of more
 sub commands (Like:
ls|wc) then prepending nice will not always
 work. --nice will make sure all sub
commands are niced.

--interactive

-p

Prompt the user about whether to run each command line and read a line
 from the
terminal. Only run the command line if the response starts
 with 'y' or 'Y'. Implies -t.

--profile profilename

-J profilename

Use profile profilename for options. This is useful if you want to
 have multiple
profiles. You could have one profile for running jobs in
 parallel on the local computer
and a different profile for running jobs
 on remote computers. See the section
PROFILE FILES for examples.

profilename corresponds to the file ~/.parallel/profilename.

You can give multiple profiles by repeating --profile. If parts of
 the profiles conflict,
the later ones will be used.

Default: config

--quote

-q

Quote command. This will quote the command line so special
 characters are not
interpreted by the shell. See the section
 QUOTING. Most people will never need this.
Quoting is disabled by
 default.

--no-run-if-empty

-r

If the stdin (standard input) only contains whitespace, do not run the command.

If used with --pipe this is slow.

--noswap

Do not start new jobs on a given computer if there is both swap-in and
 swap-out
activity.

The swap activity is only sampled every 10 seconds as the sampling
 takes 1 second
to do.

Swap activity is computed as (swap-in)*(swap-out) which in practice is
 a good value:
swapping out is not a problem, swapping in is not a
 problem, but both swapping in
and out usually indicates a problem.

--record-env

Record current environment variables in ~/.parallel/ignored_vars. This
 is useful
before using --env _.

See also --env.

--recstart startstring

--recend endstring

If --recstart is given startstring will be used to split at record start.

If --recend is given endstring will be used to split at record end.

If both --recstart and --recend are given the combined string endstringstartstring will

GNU Parallel

Page 14

have to match to find a split
 position. This is useful if either startstring or endstring

match in the middle of a record.

If neither --recstart nor --recend are given then --recend
 defaults to '\n'. To have no
record separator use --recend "".

--recstart and --recend are used with --pipe.

Use --regexp to interpret --recstart and --recend as regular
 expressions. This is
slow, however.

--regexp

Use --regexp to interpret --recstart and --recend as regular
 expressions. This is
slow, however.

--remove-rec-sep

--removerecsep

--rrs

Remove the text matched by --recstart and --recend before piping
 it to the
command.

Only used with --pipe.

--results prefix

--res prefix

Save the output into files. The files will be stored in a directory tree
 rooted at prefix.
Within this directory tree, each command will result
 in two files: prefix
/<ARGS>/stdout and prefix/<ARGS>/stderr, where
 <ARGS> is a sequence of
directories representing the header of the input
 source (if using --header :) or the
number of the input source and
 corresponding values.

E.g:

 parallel --header : --results foo echo {a} {b} ::: a I II
::: b III IIII

will generate the files:

 foo/a/I/b/III/stderr
 foo/a/I/b/III/stdout
 foo/a/I/b/IIII/stderr
 foo/a/I/b/IIII/stdout
 foo/a/II/b/III/stderr
 foo/a/II/b/III/stdout
 foo/a/II/b/IIII/stderr
 foo/a/II/b/IIII/stdout

and

 parallel --results foo echo {1} {2} ::: I II ::: III IIII

will generate the files:

 foo/1/I/2/III/stderr
 foo/1/I/2/III/stdout
 foo/1/I/2/IIII/stderr
 foo/1/I/2/IIII/stdout
 foo/1/II/2/III/stderr
 foo/1/II/2/III/stdout
 foo/1/II/2/IIII/stderr
 foo/1/II/2/IIII/stdout

GNU Parallel

Page 15

See also --files, --header, --joblog.

--resume

Resumes from the last unfinished job. By reading --joblog or the --results dir GNU
parallel will figure out the last unfinished
 job and continue from there. As GNU
parallel only looks at the
 sequence numbers in --joblog then the input, the
command, and --joblog all have to remain unchanged; otherwise GNU parallel
 may
run wrong commands.

See also --joblog, --results, --resume-failed.

--resume-failed

Retry all failed and resume from the last unfinished job. By reading --joblog GNU
parallel will figure out the failed jobs and run
 those again. After that it will resume
last unfinished job and
 continue from there. As GNU parallel only looks at the
sequence
 numbers in --joblog then the input, the command, and --joblog
 all have to
remain unchanged; otherwise GNU parallel may run wrong
 commands.

See also --joblog, --resume.

--retries n

If a job fails, retry it on another computer on which it has not
 failed. Do this n times. If
there are fewer than n computers in --sshlogin GNU parallel will re-use all the
computers. This is
 useful if some jobs fail for no apparent reason (such as network

failure).

--return filename

Transfer files from remote computers. --return is used with --sshlogin when the
arguments are files on the remote computers. When
 processing is done the file
filename will be transferred
 from the remote computer using rsync and will be put
relative to
 the default login dir. E.g.

 echo foo/bar.txt | parallel \
 --sshlogin server.example.com --return {.}.out touch
{.}.out

This will transfer the file $HOME/foo/bar.out from the computer server.example.com
to the file foo/bar.out after running touch foo/bar.out on server.example.com.

 echo /tmp/foo/bar.txt | parallel \
 --sshlogin server.example.com --return {.}.out touch
{.}.out

This will transfer the file /tmp/foo/bar.out from the computer server.example.com to
the file /tmp/foo/bar.out after running touch /tmp/foo/bar.out on
server.example.com.

Multiple files can be transferred by repeating the options multiple
 times:

 echo /tmp/foo/bar.txt | \
 parallel --sshlogin server.example.com \
 --return {.}.out --return {.}.out2 touch {.}.out {.}.out2

--return is often used with --transfer and --cleanup.

--return is ignored when used with --sshlogin : or when not used
 with --sshlogin.

--round-robin

--round

Normally --pipe will give a single block to each instance of the
 command. With
--round-robin all blocks will at random be written to
 commands already running.

GNU Parallel

Page 16

This is useful if the command takes a long
 time to initialize.

--keep-order will not work with --round-robin as it is
 impossible to track which input
block corresponds to which output.

--max-chars=max-chars

-s max-chars

Use at most max-chars characters per command line, including the
 command and
initial-arguments and the terminating nulls at the ends of
 the argument strings. The
largest allowed value is system-dependent,
 and is calculated as the argument length
limit for exec, less the size
 of your environment. The default value is the maximum.

Implies -X unless -m is set.

--show-limits

Display the limits on the command-line length which are imposed by the
 operating
system and the -s option. Pipe the input from /dev/null
 (and perhaps specify
--no-run-if-empty) if you don't want GNU parallel
 to do anything.

--semaphore (alpha testing)

Work as a counting semaphore. --semaphore will cause GNU parallel to start
command in the background. When the number of
 simultaneous jobs is reached,
GNU parallel will wait for one of
 these to complete before starting another
command.

--semaphore implies --bg unless --fg is specified.

--semaphore implies --semaphorename `tty` unless --semaphorename is
specified.

Used with --fg, --wait, and --semaphorename.

The command sem is an alias for parallel --semaphore.

See also man sem.

--semaphorename name

--id name

Use name as the name of the semaphore. Default is the name of the
 controlling tty
(output from tty).

The default normally works as expected when used interactively, but
 when used in a
script name should be set. $$ or my_task_name
 are often a good value.

The semaphore is stored in ~/.parallel/semaphores/

Implies --semaphore.

See also man sem.

--semaphoretimeout secs (alpha testing)

If the semaphore is not released within secs seconds, take it anyway.

Implies --semaphore.

See also man sem.

--seqreplace replace-str

Use the replacement string replace-str instead of {#} for
 job sequence number.

--shebang

--hashbang

GNU parallel can be called as a shebang (#!) command as the first
 line of a script.
The content of the file will be treated as
 inputsource.

GNU Parallel

Page 17

Like this:

 #!/usr/bin/parallel --shebang -r traceroute

 foss.org.my
 debian.org
 freenetproject.org

--shebang must be set as the first option.

On FreeBSD env is needed:

 #!/usr/bin/env -S parallel --shebang -r traceroute

 foss.org.my
 debian.org
 freenetproject.org

--shebang-wrap

GNU parallel can parallelize scripts by wrapping the shebang
 line. If the program
can be run like this:

 cat arguments | parallel the_program

then the script can be changed to:

 #!/usr/bin/parallel --shebang-wrap /the/original/parser
--with-options

E.g.

 #!/usr/bin/parallel --shebang-wrap /usr/bin/python

If the program can be run like this:

 cat data | parallel --pipe the_program

then the script can be changed to:

 #!/usr/bin/parallel --shebang-wrap --pipe
/the/original/parser --with-options

E.g.

 #!/usr/bin/parallel --shebang-wrap --pipe /usr/bin/perl -w

--shebang-wrap must be set as the first option.

--shellquote

Does not run the command but quotes it. Useful for making quoted
 composed
commands for GNU parallel.

--skip-first-line

Do not use the first line of input (used by GNU parallel itself
 when called with
--shebang).

--sshdelay secs

Delay starting next ssh by secs seconds. GNU parallel will pause secs seconds
after starting each ssh. secs can be less than 1
 seconds.

-S [ncpu/]sshlogin[,[ncpu/]sshlogin[,...]]

--sshlogin [ncpu/]sshlogin[,[ncpu/]sshlogin[,...]]

GNU Parallel

Page 18

Distribute jobs to remote computers. The jobs will be run on a list of
 remote
computers. GNU parallel will determine the number of CPU
 cores on the remote
computers and run the number of jobs as specified by -j. If the number ncpu is given
GNU parallel will use this
 number for number of CPU cores on the host. Normally
ncpu will not
 be needed.

An sshlogin is of the form:

 [sshcommand [options]] [username@]hostname

The sshlogin must not require a password.

The sshlogin ':' is special, it means 'no ssh' and will therefore run
 on the local
computer.

The sshlogin '..' is special, it read sshlogins from ~/.parallel/sshloginfile

The sshlogin '-' is special, too, it read sshlogins from stdin
 (standard input).

To specify more sshlogins separate the sshlogins by comma or repeat
 the options
multiple times.

For examples: see --sshloginfile.

The remote host must have GNU parallel installed.

--sshlogin is known to cause problems with -m and -X.

--sshlogin is often used with --transfer, --return, --cleanup, and --trc.

--sshloginfile filename

--slf filename

File with sshlogins. The file consists of sshlogins on separate
 lines. Empty lines and
lines starting with '#' are ignored. Example:

 server.example.com
 username@server2.example.com
 8/my-8-core-server.example.com
 2/my_other_username@my-dualcore.example.net
 # This server has SSH running on port 2222
 ssh -p 2222 server.example.net
 4/ssh -p 2222 quadserver.example.net
 # Use a different ssh program
 myssh -p 2222 -l myusername hexacpu.example.net
 # Use a different ssh program with default number of cores
 //usr/local/bin/myssh -p 2222 -l myusername
hexacpu.example.net
 # Use a different ssh program with 6 cores
 6//usr/local/bin/myssh -p 2222 -l myusername
hexacpu.example.net
 # Assume 16 cores on the local computer
 16/:

When using a different ssh program the last argument must be the hostname.

Multiple --sshloginfile are allowed.

GNU parallel will first look for the file in current dir; if that
 fails it look for the file in
~/.parallel.

The sshloginfile '..' is special, it read sshlogins from
 ~/.parallel/sshloginfile

The sshloginfile '.' is special, it read sshlogins from
 /etc/parallel/sshloginfile

The sshloginfile '-' is special, too, it read sshlogins from stdin
 (standard input).

--slotreplace replace-str (alpha testing)

GNU Parallel

Page 19

Use the replacement string replace-str instead of {%} for
 job slot number.

--silent

Silent. The job to be run will not be printed. This is the default.
 Can be reversed with
-v.

--tty

Open terminal tty. If GNU parallel is used for starting an
 interactive program then
this option may be needed. It will start only
 one job at a time (i.e. -j1), not buffer the
output (i.e. -u),
 and it will open a tty for the job. When the job is done, the next job

will get the tty.

--tag

Tag lines with arguments. Each output line will be prepended with the
 arguments
and TAB (\t). When combined with --onall or --nonall
 the lines will be prepended
with the sshlogin instead.

--tag is ignored when using -u.

--tagstring str

Tag lines with a string. Each output line will be prepended with str and TAB (\t). str
can contain replacement strings such as
 {}.

--tagstring is ignored when using -u, --onall, and --nonall.

--tmpdir dirname

Directory for temporary files. GNU parallel normally buffers output
 into temporary
files in /tmp. By setting --tmpdir you can use a
 different dir for the files. Setting
--tmpdir is equivalent to
 setting $TMPDIR.

--timeout val

Time out for command. If the command runs for longer than val
 seconds it will get
killed with SIGTERM, followed by SIGTERM 200 ms
 later, followed by SIGKILL 200
ms later.

If val is followed by a % then the timeout will dynamically be
 computed as a
percentage of the median average runtime. Only values
 > 100% will make sense.

--verbose

-t

Print the job to be run on stderr (standard error).

See also -v, -p.

--transfer

Transfer files to remote computers. --transfer is used with --sshlogin when the
arguments are files and should be transferred
 to the remote computers. The files will
be transferred using rsync
 and will be put relative to the default work dir. If the path
contains
 /./ the remaining path will be relative to the work dir. E.g.

 echo foo/bar.txt | parallel \
 --sshlogin server.example.com --transfer wc

This will transfer the file foo/bar.txt to the computer server.example.com to the file
$HOME/foo/bar.txt before running wc foo/bar.txt on server.example.com.

 echo /tmp/foo/bar.txt | parallel \
 --sshlogin server.example.com --transfer wc

This will transfer the file foo/bar.txt to the computer server.example.com to the file
/tmp/foo/bar.txt before running wc /tmp/foo/bar.txt on server.example.com.

GNU Parallel

Page 20

--transfer is often used with --return and --cleanup.

--transfer is ignored when used with --sshlogin : or when not used with --sshlogin.

--trc filename

Transfer, Return, Cleanup. Short hand for:

--transfer --return filename --cleanup

--trim <n|l|r|lr|rl>

Trim white space in input.

n

No trim. Input is not modified. This is the default.

l

Left trim. Remove white space from start of input. E.g. " a bc " -> "a bc ".

r

Right trim. Remove white space from end of input. E.g. " a bc " -> " a bc".

lr

rl

Both trim. Remove white space from both start and end of input. E.g. "
 a bc "
-> "a bc". This is the default if --colsep is used.

--ungroup

-u

Ungroup output. Output is printed as soon as possible and by passes
 GNU parallel
internal processing. This may cause output from
 different commands to be mixed
thus should only be used if you do not
 care about the output. Compare these:

parallel -j0 'sleep {};echo -n start{};sleep {};echo {}end' ::: 1 2 3 4

parallel -u -j0 'sleep {};echo -n start{};sleep {};echo {}end' ::: 1 2 3 4

It also disables --tag. GNU parallel runs faster with -u. Can
 be reversed with
--group.

See also: --line-buffer --group

--extensionreplace replace-str

--er replace-str

Use the replacement string replace-str instead of {.} for input line without extension.

--use-cpus-instead-of-cores

Count the number of physical CPUs instead of CPU cores. When computing
 how
many jobs to run simultaneously relative to the number of CPU cores
 you can ask
GNU parallel to instead look at the number of physical
 CPUs. This will make sense
for computers that have hyperthreading as
 two jobs running on one CPU with
hyperthreading will run slower than
 two jobs running on two physical CPUs. Some
multi-core CPUs can run
 faster if only one thread is running per physical CPU. Most
users will
 not need this option.

-v

Verbose. Print the job to be run on stdout (standard output). Can be reversed
 with
--silent. See also -t.

Use -v -v to print the wrapping ssh command when running remotely.

--version

GNU Parallel

Page 21

-V

Print the version GNU parallel and exit.

--workdir mydir

--wd mydir

Files transferred using --transfer and --return will be relative
 to mydir on remote
computers, and the command will be executed in
 the dir mydir.

The special mydir value ... will create working dirs under ~/.parallel/tmp/ on the
remote computers. If --cleanup is given
 these dirs will be removed.

The special mydir value . uses the current working dir. If the
 current working dir is
beneath your home dir, the value . is
 treated as the relative path to your home dir.
This means that if your
 home dir is different on remote computers (e.g. if your login is
different) the relative path will still be relative to your home dir.

To see the difference try:

parallel -S server pwd ::: ""

parallel --wd . -S server pwd ::: ""

parallel --wd ... -S server pwd ::: ""

--wait

Wait for all commands to complete.

Implies --semaphore.

See also man sem.

-X

Multiple arguments with context replace. Insert as many arguments as
 the command
line length permits. If multiple jobs are being run in
 parallel: distribute the arguments
evenly among the jobs. Use -j1
 to avoid this.

If {} is not used the arguments will be appended to the line. If {} is used as part of a
word (like pic{}.jpg) then the whole
 word will be repeated. If {} is used multiple times
each {} will
 be replaced with the arguments.

Normally -X will do the right thing, whereas -m can give
 unexpected results if {} is
used as part of a word.

Support for -X with --sshlogin is limited and may fail.

See also -m.

--exit

-x

Exit if the size (see the -s option) is exceeded.

--xapply

Read multiple input sources like xapply. If multiple input sources
 are given, one
argument will be read from each of the input
 sources. The arguments can be
accessed in the command as {1}
 .. {n}, so {1} will be a line from the first input
source, and {6} will refer to the line with the same line number from the 6th
 input
source.

Compare these two:

 parallel echo {1} {2} ::: 1 2 3 ::: a b c
 parallel --xapply echo {1} {2} ::: 1 2 3 ::: a b c

Arguments will be recycled if one input source has more arguments than the others:

 parallel --xapply echo {1} {2} {3} ::: 1 2 ::: I II III :::

GNU Parallel

Page 22

a b c d e f g

See also --header.

EXAMPLE: Working as xargs -n1. Argument appending
GNU parallel can work similar to xargs -n1.

To compress all html files using gzip run:

find . -name '*.html' | parallel gzip --best

If the file names may contain a newline use -0. Substitute FOO BAR with
 FUBAR in all files in this dir
and subdirs:

find . -type f -print0 | parallel -q0 perl -i -pe 's/FOO BAR/FUBAR/g'

Note -q is needed because of the space in 'FOO BAR'.

EXAMPLE: Reading arguments from command line
GNU parallel can take the arguments from command line instead of
 stdin (standard input). To
compress all html files in the current dir
 using gzip run:

parallel gzip --best ::: *.html

To convert *.wav to *.mp3 using LAME running one process per CPU core
 run:

parallel lame {} -o {.}.mp3 ::: *.wav

EXAMPLE: Inserting multiple arguments
When moving a lot of files like this: mv *.log destdir you will
 sometimes get the error:

bash: /bin/mv: Argument list too long

because there are too many files. You can instead do:

ls | grep -E '\.log$' | parallel mv {} destdir

This will run mv for each file. It can be done faster if mv gets
 as many arguments that will fit on the
line:

ls | grep -E '\.log$' | parallel -m mv {} destdir

EXAMPLE: Context replace
To remove the files pict0000.jpg .. pict9999.jpg you could do:

seq -w 0 9999 | parallel rm pict{}.jpg

You could also do:

seq -w 0 9999 | perl -pe 's/(.*)/pict$1.jpg/' | parallel -m rm

The first will run rm 10000 times, while the last will only run rm as many times needed to keep the
command line length short
 enough to avoid Argument list too long (it typically runs 1-2 times).

You could also run:

seq -w 0 9999 | parallel -X rm pict{}.jpg

This will also only run rm as many times needed to keep the command
 line length short enough.

EXAMPLE: Compute intensive jobs and substitution
If ImageMagick is installed this will generate a thumbnail of a jpg
 file:

convert -geometry 120 foo.jpg thumb_foo.jpg

GNU Parallel

Page 23

This will run with number-of-cpu-cores jobs in parallel for all jpg
 files in a directory:

ls *.jpg | parallel convert -geometry 120 {} thumb_{}

To do it recursively use find:

find . -name '*.jpg' | parallel convert -geometry 120 {} {}_thumb.jpg

Notice how the argument has to start with {} as {} will include path
 (e.g. running convert -geometry
120 ./foo/bar.jpg
 thumb_./foo/bar.jpg would clearly be wrong). The command will
 generate files like
./foo/bar.jpg_thumb.jpg.

Use {.} to avoid the extra .jpg in the file name. This command will
 make files like ./foo/bar_thumb.jpg:

find . -name '*.jpg' | parallel convert -geometry 120 {} {.}_thumb.jpg

EXAMPLE: Substitution and redirection
This will generate an uncompressed version of .gz-files next to the .gz-file:

parallel zcat {} ">"{.} ::: *.gz

Quoting of > is necessary to postpone the redirection. Another
 solution is to quote the whole
command:

parallel "zcat {} >{.}" ::: *.gz

Other special shell characters (such as * ; $ > < | >> <<) also need
 to be put in quotes, as they may
otherwise be interpreted by the shell
 and not given to GNU parallel.

EXAMPLE: Composed commands
A job can consist of several commands. This will print the number of
 files in each directory:

ls | parallel 'echo -n {}" "; ls {}|wc -l'

To put the output in a file called <name>.dir:

ls | parallel '(echo -n {}" "; ls {}|wc -l) > {}.dir'

Even small shell scripts can be run by GNU parallel:

find . | parallel 'a={}; name=${a##*/}; upper=$(echo "$name" | tr "[:lower:]" "[:upper:]"); echo
"$name - $upper"'

ls | parallel 'mv {} "$(echo {} | tr "[:upper:]" "[:lower:]")"'

Given a list of URLs, list all URLs that fail to download. Print the
 line number and the URL.

cat urlfile | parallel "wget {} 2>/dev/null || grep -n {} urlfile"

Create a mirror directory with the same filenames except all files and
 symlinks are empty files.

cp -rs /the/source/dir mirror_dir; find mirror_dir -type l | parallel -m rm {} '&&' touch {}

Find the files in a list that do not exist

cat file_list | parallel 'if [! -e {}] ; then echo {}; fi'

EXAMPLE: Calling Bash functions
If the composed command is longer than a line, it becomes hard to
 read. In Bash you can use
functions. Just remember to export -f the
 function.

 doit() {
 echo Doing it for $1
 sleep 2
 echo Done with $1

GNU Parallel

Page 24

 }
 export -f doit
 parallel doit ::: 1 2 3

 doubleit() {
 echo Doing it for $1 $2
 sleep 2
 echo Done with $1 $2
 }
 export -f doubleit
 parallel doubleit ::: 1 2 3 ::: a b

To do this on remote servers you need to transfer the function using --env:

 parallel --env doit -S server doit ::: 1 2 3
 parallel --env doubleit -S server doubleit ::: 1 2 3 ::: a b

EXAMPLE: Removing file extension when processing files
When processing files removing the file extension using {.} is
 often useful.

Create a directory for each zip-file and unzip it in that dir:

parallel 'mkdir {.}; cd {.}; unzip ../{}' ::: *.zip

Recompress all .gz files in current directory using bzip2 running 1
 job per CPU core in parallel:

parallel "zcat {} | bzip2 >{.}.bz2 && rm {}" ::: *.gz

Convert all WAV files to MP3 using LAME:

find sounddir -type f -name '*.wav' | parallel lame {} -o {.}.mp3

Put all converted in the same directory:

find sounddir -type f -name '*.wav' | parallel lame {} -o mydir/{/.}.mp3

EXAMPLE: Removing two file extensions when processing files and
 calling GNU
Parallel from itself

If you have directory with tar.gz files and want these extracted in
 the corresponding dir (e.g foo.tar.gz
will be extracted in the dir
 foo) you can do:

ls *.tar.gz| parallel --er {tar} 'echo {tar}|parallel "mkdir -p {.} ; tar -C {.} -xf {.}.tar.gz"'

EXAMPLE: Download 10 images for each of the past 30 days
Let us assume a website stores images like:

 http://www.example.com/path/to/YYYYMMDD_##.jpg

where YYYYMMDD is the date and ## is the number 01-10. This will
 download images for the past 30
days:

parallel wget http://www.example.com/path/to/'$(date -d "today -{1} days" +%Y%m%d)_{2}.jpg'
::: $(seq 30) ::: $(seq -w 10)

$(date -d "today -{1} days" +%Y%m%d) will give the dates in
 YYYYMMDD with {1} days subtracted.

EXAMPLE: Breadth first parallel web crawler/mirrorer
This script below will crawl and mirror a URL in parallel. It
 downloads first pages that are 1 click down,
then 2 clicks down, then
 3; instead of the normal depth first, where the first link link on
 each page is
fetched first.

GNU Parallel

Page 25

Run like this:

PARALLEL=-j100 ./parallel-crawl http://gatt.org.yeslab.org/

Remove the wget part if you only want a web crawler.

It works by fetching a page from a list of URLs and looking for links
 in that page that are within the
same starting URL and that have not
 already been seen. These links are added to a new queue.
When all the
 pages from the list is done, the new queue is moved to the list of
 URLs and the process
is started over until no unseen links are found.

 #!/bin/bash

 # E.g. http://gatt.org.yeslab.org/
 URL=$1
 # Stay inside the start dir
 BASEURL=$(echo $URL | perl -pe 's:#.*::; s:(//.*/)[^/]*:$1:')
 URLLIST=$(mktemp urllist.XXXX)
 URLLIST2=$(mktemp urllist.XXXX)
 SEEN=$(mktemp seen.XXXX)

 # Spider to get the URLs
 echo $URL >$URLLIST
 cp $URLLIST $SEEN

 while [-s $URLLIST] ; do
 cat $URLLIST |
 parallel lynx -listonly -image_links -dump {} \; wget -qm -l1 -Q1 {}
\; echo Spidered: {} \>\&2 |
 perl -ne 's/#.*//; s/\s+\d+.\s(\S+)$/$1/ and do { $seen{$1}++ or
print }' |
 grep -F $BASEURL |
 grep -v -x -F -f $SEEN | tee -a $SEEN > $URLLIST2
 mv $URLLIST2 $URLLIST
 done

 rm -f $URLLIST $URLLIST2 $SEEN

EXAMPLE: Process files from a tar file while unpacking
If the files to be processed are in a tar file then unpacking one file
 and processing it immediately may
be faster than first unpacking all
 files.

tar xvf foo.tgz | perl -ne 'print $l;$l=$_;END{print $l}' |
 parallel echo

The Perl one-liner is needed to avoid race condition.

EXAMPLE: Rewriting a for-loop and a while-read-loop
for-loops like this:

 (for x in `cat list` ; do
 do_something $x
 done) | process_output

and while-read-loops like this:

 cat list | (while read x ; do
 do_something $x

GNU Parallel

Page 26

 done) | process_output

can be written like this:

cat list | parallel do_something | process_output

For example: Find which host name in a list has IP address 1.2.3 4:

cat hosts.txt | parallel -P 100 host | grep 1.2.3.4

If the processing requires more steps the for-loop like this:

 (for x in `cat list` ; do
 no_extension=${x%.*};
 do_something $x scale $no_extension.jpg
 do_step2 <$x $no_extension
 done) | process_output

and while-loops like this:

 cat list | (while read x ; do
 no_extension=${x%.*};
 do_something $x scale $no_extension.jpg
 do_step2 <$x $no_extension
 done) | process_output

can be written like this:

cat list | parallel "do_something {} scale {.}.jpg ; do_step2 <{} {.}" | process_output

EXAMPLE: Rewriting nested for-loops
Nested for-loops like this:

 (for x in `cat xlist` ; do
 for y in `cat ylist` ; do
 do_something $x $y
 done
 done) | process_output

can be written like this:

parallel do_something {1} {2} :::: xlist ylist | process_output

Nested for-loops like this:

 (for gender in M F ; do
 for size in S M L XL XXL ; do
 echo $gender $size
 done
 done) | sort

can be written like this:

parallel echo {1} {2} ::: M F ::: S M L XL XXL | sort

EXAMPLE: Finding the lowest difference between files
diff is good for finding differences in text files. diff | wc -l
 gives an indication of the size of the
difference. To find the
 differences between all files in the current dir do:

parallel --tag 'diff {1} {2} | wc -l' ::: * ::: * | sort -nk3

GNU Parallel

Page 27

This way it is possible to see if some files are closer to other
 files.

EXAMPLE: for-loops with column names
When doing multiple nested for-loops it can be easier to keep track of
 the loop variable if is is named
instead of just having a number. Use --header : to let the first argument be an named alias for the

positional replacement string:

 parallel --header : echo {gender} {size} ::: gender M F ::: size S M L XL
 XXL

This also works if the input file is a file with columns:

 cat addressbook.tsv | parallel --colsep '\t' --header : echo {Name}
{E-mail address}

EXAMPLE: Count the differences between all files in a dir
Using --results the results are saved in /tmp/diffcount*.

 parallel --results /tmp/diffcount "diff -U 0 {1} {2} |tail -n +3 |grep -v
 '^@'|wc -l" ::: * ::: *

To see the difference between file A and file B look at the file
 '/tmp/diffcount 1 A 2 B' where spaces
are TABs (\t).

EXAMPLE: Speeding up fast jobs
Starting a job on the local machine takes around 3 ms. This can be a
 big overhead if the job takes
very few ms to run. Often you can group
 small jobs together using -X which will make the overhead
less
 significant. Compare the speed of these:

 seq -w 0 9999 | parallel touch pict{}.jpg

 seq -w 0 9999 | parallel -X touch pict{}.jpg

If your program cannot take multiple arguments, then you can use GNU parallel to spawn multiple
GNU parallels:

 seq -w 0 999999 | parallel -j10 --pipe parallel -j0 touch pict{}.jpg

If -j0 normally spawns 506 jobs, then the above will try to spawn
 5060 jobs. It is likely that you this
way will hit the limit of number
 of processes and/or filehandles. Look at 'ulimit -n' and 'ulimit -u'
 to raise
these limits.

EXAMPLE: Using shell variables
When using shell variables you need to quote them correctly as they
 may otherwise be split on
spaces.

Notice the difference between:

 V=("My brother's 12\" records are worth <\$\$\$>"'!' Foo Bar)
 parallel echo ::: ${V[@]} # This is probably not what you want

and:

 V=("My brother's 12\" records are worth <\$\$\$>"'!' Foo Bar)
 parallel echo ::: "${V[@]}"

When using variables in the actual command that contains special
 characters (e.g. space) you can

GNU Parallel

Page 28

quote them using '"$VAR"' or using
 "'s and -q:

 V="Here are two "
 parallel echo "'$V'" ::: spaces
 parallel -q echo "$V" ::: spaces

EXAMPLE: Group output lines
When running jobs that output data, you often do not want the output
 of multiple jobs to run together.
GNU parallel defaults to grouping
 the output of each job, so the output is printed when the job

finishes. If you want full lines to be printed while the job is
 running you can use --line-buffer. If you
want output to be
 printed as soon as possible you can use -u.

Compare the output of:

parallel traceroute ::: foss.org.my debian.org freenetproject.org

to the output of:

parallel --line-buffer traceroute ::: foss.org.my debian.org freenetproject.org

and:

parallel -u traceroute ::: foss.org.my debian.org freenetproject.org

EXAMPLE: Tag output lines
GNU parallel groups the output lines, but it can be hard to see
 where the different jobs begin. --tag
prepends the argument to make
 that more visible:

parallel --tag traceroute ::: foss.org.my debian.org freenetproject.org

--tag works with --line-buffer but not with -u:

parallel --tag --line-buffer traceroute ::: foss.org.my debian.org freenetproject.org

Check the uptime of the servers in ~/.parallel/sshloginfile:

parallel --tag -S .. --nonall uptime

EXAMPLE: Keep order of output same as order of input
Normally the output of a job will be printed as soon as it
 completes. Sometimes you want the order of
the output to remain the
 same as the order of the input. This is often important, if the output
 is used as
input for another system. -k will make sure the order of
 output will be in the same order as input even
if later jobs end
 before earlier jobs.

Append a string to every line in a text file:

cat textfile | parallel -k echo {} append_string

If you remove -k some of the lines may come out in the wrong order.

Another example is traceroute:

parallel traceroute ::: foss.org.my debian.org freenetproject.org

will give traceroute of foss.org.my, debian.org and
 freenetproject.org, but it will be sorted according to
which job
 completed first.

To keep the order the same as input run:

parallel -k traceroute ::: foss.org.my debian.org freenetproject.org

This will make sure the traceroute to foss.org.my will be printed
 first.

A bit more complex example is downloading a huge file in chunks in
 parallel: Some internet

GNU Parallel

Page 29

connections will deliver more data if you
 download files in parallel. For downloading files in parallel
see:
 "EXAMPLE: Download 10 images for each of the past 30 days". But if you
 are downloading a big
file you can download the file in chunks in
 parallel.

To download byte 10000000-19999999 you can use curl:

curl -r 10000000-19999999 http://example.com/the/big/file > file.part

To download a 1 GB file we need 100 10MB chunks downloaded and
 combined in the correct order.

seq 0 99 | parallel -k curl -r \
 {}0000000-{}9999999 http://example.com/the/big/file > file

EXAMPLE: Parallel grep
grep -r greps recursively through directories. On multicore CPUs
 GNU parallel can often speed this
up.

find . -type f | parallel -k -j150% -n 1000 -m grep -H -n STRING {}

This will run 1.5 job per core, and give 1000 arguments to grep.

EXAMPLE: Using remote computers
To run commands on a remote computer SSH needs to be set up and you
 must be able to login
without entering a password (The commands ssh-copy-id and ssh-agent may help you do that).

If you need to login to a whole cluster, you typically do not want to
 accept the host key for every host.
You want to accept them the first
 time and be warned if they are ever changed. To do that:

 # Add the servers to the sshloginfile
 (echo servera; echo serverb) > .parallel/my_cluster
 # Make sure .ssh/config exist
 touch .ssh/config
 cp .ssh/config .ssh/config.backup
 # Disable StrictHostKeyChecking temporarily
 (echo 'Host *'; echo StrictHostKeyChecking no) >> .ssh/config
 parallel --slf my_cluster --nonall true
 # Remove the disabling of StrictHostKeyChecking
 mv .ssh/config.backup .ssh/config

The servers in .parallel/my_cluster are now added in .ssh/known_hosts.

To run echo on server.example.com:

 seq 10 | parallel --sshlogin server.example.com echo

To run commands on more than one remote computer run:

 seq 10 | parallel --sshlogin server.example.com,server2.example.net echo

Or:

 seq 10 | parallel --sshlogin server.example.com \
 --sshlogin server2.example.net echo

If the login username is foo on server2.example.net use:

 seq 10 | parallel --sshlogin server.example.com \
 --sshlogin foo@server2.example.net echo

If your list of hosts is server1-88.example.net with login foo:

GNU Parallel

Page 30

 seq 10 | parallel -Sfoo@server{1..88}.example.net echo

To distribute the commands to a list of computers, make a file mycomputers with all the computers:

 server.example.com
 foo@server2.example.com
 server3.example.com

Then run:

 seq 10 | parallel --sshloginfile mycomputers echo

To include the local computer add the special sshlogin ':' to the list:

 server.example.com
 foo@server2.example.com
 server3.example.com
 :

GNU parallel will try to determine the number of CPU cores on each
 of the remote computers, and
run one job per CPU core - even if the
 remote computers do not have the same number of CPU
cores.

If the number of CPU cores on the remote computers is not identified
 correctly the number of CPU
cores can be added in front. Here the
 computer has 8 CPU cores.

 seq 10 | parallel --sshlogin 8/server.example.com echo

EXAMPLE: Transferring of files
To recompress gzipped files with bzip2 using a remote computer run:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com \
 --transfer "zcat {} | bzip2 -9 >{.}.bz2"

This will list the .gz-files in the logs directory and all
 directories below. Then it will transfer the files to
server.example.com to the corresponding directory in $HOME/logs. On server.example.com the file
will be recompressed
 using zcat and bzip2 resulting in the corresponding file with .gz replaced with
.bz2.

If you want the resulting bz2-file to be transferred back to the local
 computer add --return {.}.bz2:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com \
 --transfer --return {.}.bz2 "zcat {} | bzip2 -9 >{.}.bz2"

After the recompressing is done the .bz2-file is transferred back to
 the local computer and put next to
the original .gz-file.

If you want to delete the transferred files on the remote computer add --cleanup. This will remove both
the file transferred to the remote
 computer and the files transferred from the remote computer:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com \
 --transfer --return {.}.bz2 --cleanup "zcat {} | bzip2 -9 >{.}.bz2"

If you want run on several computers add the computers to --sshlogin
 either using ',' or multiple

GNU Parallel

Page 31

--sshlogin:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com,server2.example.com \
 --sshlogin server3.example.com \
 --transfer --return {.}.bz2 --cleanup "zcat {} | bzip2 -9 >{.}.bz2"

You can add the local computer using --sshlogin :. This will disable the
 removing and transferring for
the local computer only:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com,server2.example.com \
 --sshlogin server3.example.com \
 --sshlogin : \
 --transfer --return {.}.bz2 --cleanup "zcat {} | bzip2 -9 >{.}.bz2"

Often --transfer, --return and --cleanup are used together. They can be
 shortened to --trc:

 find logs/ -name '*.gz' | \
 parallel --sshlogin server.example.com,server2.example.com \
 --sshlogin server3.example.com \
 --sshlogin : \
 --trc {.}.bz2 "zcat {} | bzip2 -9 >{.}.bz2"

With the file mycomputers containing the list of computers it becomes:

 find logs/ -name '*.gz' | parallel --sshloginfile mycomputers \
 --trc {.}.bz2 "zcat {} | bzip2 -9 >{.}.bz2"

If the file ~/.parallel/sshloginfile contains the list of computers
 the special short hand -S .. can be used:

 find logs/ -name '*.gz' | parallel -S .. \
 --trc {.}.bz2 "zcat {} | bzip2 -9 >{.}.bz2"

EXAMPLE: Distributing work to local and remote computers
Convert *.mp3 to *.ogg running one process per CPU core on local computer and server2:

 parallel --trc {.}.ogg -S server2,: \
 'mpg321 -w - {} | oggenc -q0 - -o {.}.ogg' ::: *.mp3

EXAMPLE: Running the same command on remote computers
To run the command uptime on remote computers you can do:

parallel --tag --nonall -S server1,server2 uptime

--nonall reads no arguments. If you have a list of jobs you want
 run on each computer you can do:

parallel --tag --onall -S server1,server2 echo ::: 1 2 3

Remove --tag if you do not want the sshlogin added before the
 output.

If you have a lot of hosts use '-j0' to access more hosts in parallel.

EXAMPLE: Parallelizing rsync
rsync is a great tool, but sometimes it will not fill up the
 available bandwidth. This is often a problem
when copying several big
 files over high speed connections.

The following will start one rsync per big file in src-dir to dest-dir on the server fooserver:

GNU Parallel

Page 32

cd src-dir; find . -type f -size +100000 | parallel -v ssh fooserver
 mkdir -p /dest-dir/{//}\;rsync
-Havessh {} fooserver:/dest-dir/{}

The dirs created may end up with wrong permissions and smaller files
 are not being transferred. To
fix those run rsync a final time:

rsync -Havessh src-dir/ fooserver:/dest-dir/

If you are unable to push data, but need to pull them and the files
 are called digits.png (e.g.
000000.png) you might be able to do:

seq -w 0 99 | parallel rsync -Havessh fooserver:src-path/*{}.png destdir/

EXAMPLE: Use multiple inputs in one command
Copy files like foo.es.ext to foo.ext:

ls *.es.* | perl -pe 'print; s/\.es//' | parallel -N2 cp {1} {2}

The perl command spits out 2 lines for each input. GNU parallel
 takes 2 inputs (using -N2) and
replaces {1} and {2} with the inputs.

Count in binary:

parallel -k echo ::: 0 1 ::: 0 1 ::: 0 1 ::: 0 1 ::: 0 1 ::: 0 1

Print the number on the opposing sides of a six sided die:

parallel --xapply -a <(seq 6) -a <(seq 6 -1 1) echo

parallel --xapply echo :::: <(seq 6) <(seq 6 -1 1)

Convert files from all subdirs to PNG-files with consecutive numbers
 (useful for making input PNG's
for ffmpeg):

parallel --xapply -a <(find . -type f | sort) -a <(seq $(find . -type f|wc -l)) convert {1} {2}.png

Alternative version:

find . -type f | sort | parallel convert {} {#}.png

EXAMPLE: Use a table as input
Content of table_file.tsv:

 foo<TAB>bar
 baz <TAB> quux

To run:

 cmd -o bar -i foo
 cmd -o quux -i baz

you can run:

parallel -a table_file.tsv --colsep '\t' cmd -o {2} -i {1}

Note: The default for GNU parallel is to remove the spaces around the columns. To keep the spaces:

parallel -a table_file.tsv --trim n --colsep '\t' cmd -o {2} -i {1}

EXAMPLE: Run the same command 10 times
If you want to run the same command with the same arguments 10 times
 in parallel you can do:

seq 10 | parallel -n0 my_command my_args

GNU Parallel

Page 33

EXAMPLE: Working as cat | sh. Resource inexpensive jobs and evaluation
GNU parallel can work similar to cat | sh.

A resource inexpensive job is a job that takes very little CPU, disk
 I/O and network I/O. Ping is an
example of a resource inexpensive
 job. wget is too - if the webpages are small.

The content of the file jobs_to_run:

 ping -c 1 10.0.0.1
 wget http://example.com/status.cgi?ip=10.0.0.1
 ping -c 1 10.0.0.2
 wget http://example.com/status.cgi?ip=10.0.0.2
 ...
 ping -c 1 10.0.0.255
 wget http://example.com/status.cgi?ip=10.0.0.255

To run 100 processes simultaneously do:

parallel -j 100 < jobs_to_run

As there is not a command the jobs will be evaluated by the shell.

EXAMPLE: Processing a big file using more cores
To process a big file or some output you can use --pipe to split up
 the data into blocks and pipe the
blocks into the processing program.

If the program is gzip -9 you can do:

cat bigfile | parallel --pipe --recend '' -k gzip -9 >bigfile.gz

This will split bigfile into blocks of 1 MB and pass that to gzip
 -9 in parallel. One gzip will be run per
CPU core. The output of gzip -9 will be kept in order and saved to bigfile.gz

gzip works fine if the output is appended, but some processing does
 not work like that - for example
sorting. For this GNU parallel can
 put the output of each command into a file. This will sort a big file
 in
parallel:

cat bigfile | parallel --pipe --files sort | parallel -Xj1 sort -m {} ';' rm {} >bigfile.sort

Here bigfile is split into blocks of around 1MB, each block ending
 in '\n' (which is the default for
--recend). Each block is passed
 to sort and the output from sort is saved into files. These
 files are
passed to the second parallel that runs sort -m on the
 files before it removes the files. The output is
saved to bigfile.sort.

GNU parallel's --pipe maxes out at around 100 MB/s because every
 byte has to be copied through
GNU parallel. But if bigfile is a
 real (seekable) file GNU parallel can by-pass the copying and send

the parts directly to the program:

parallel --pipepart --block 100m -a bigfile --files sort | parallel -Xj1 sort -m {} ';' rm {} >
bigfile.sort

EXAMPLE: Running more than 500 jobs workaround
If you need to run a massive amount of jobs in parallel, then you will
 likely hit the filehandle limit which
is often around 500 jobs. If you
 are super user you can raise the limit in /etc/security/limits.conf
 but
you can also use this workaround. The filehandle limit is per
 process. That means that if you just
spawn more GNU parallels then
 each of them can run 500 jobs. This will spawn up to 2500 jobs:

cat myinput | parallel --pipe -N 50 --round-robin -j50 parallel -j50 your_prg

This will spawn up to 250000 jobs (use with caution - you need 250 GB RAM to do this):

cat myinput | parallel --pipe -N 500 --round-robin -j500 parallel -j500 your_prg

GNU Parallel

Page 34

EXAMPLE: Working as mutex and counting semaphore
The command sem is an alias for parallel --semaphore.

A counting semaphore will allow a given number of jobs to be started
 in the background. When the
number of jobs are running in the
 background, GNU sem will wait for one of these to complete before

starting another command. sem --wait will wait for all jobs to
 complete.

Run 10 jobs concurrently in the background:

 for i in *.log ; do
 echo $i
 sem -j10 gzip $i ";" echo done
 done
 sem --wait

A mutex is a counting semaphore allowing only one job to run. This
 will edit the file myfile and
prepends the file with lines with the
 numbers 1 to 3.

 seq 3 | parallel sem sed -i -e 'i{}' myfile

As myfile can be very big it is important only one process edits
 the file at the same time.

Name the semaphore to have multiple different semaphores active at the
 same time:

 seq 3 | parallel sem --id mymutex sed -i -e 'i{}' myfile

EXAMPLE: Start editor with filenames from stdin (standard input)
You can use GNU parallel to start interactive programs like emacs or vi:

cat filelist | parallel --tty -X emacs

cat filelist | parallel --tty -X vi

If there are more files than will fit on a single command line, the
 editor will be started again with the
remaining files.

EXAMPLE: Running sudo
sudo requires a password to run a command as root. It caches the
 access, so you only need to enter
the password again if you have not
 used sudo for a while.

The command:

 parallel sudo echo ::: This is a bad idea

is no good, as you would be prompted for the sudo password for each of
 the jobs. You can either do:

 sudo echo This
 parallel sudo echo ::: is a good idea

or:

 sudo parallel echo ::: This is a good idea

This way you only have to enter the sudo password once.

EXAMPLE: GNU Parallel as queue system/batch manager
GNU parallel can work as a simple job queue system or batch manager.
 The idea is to put the jobs
into a file and have GNU parallel read
 from that continuously. As GNU parallel will stop at end of file
we
 use tail to continue reading:

GNU Parallel

Page 35

true >jobqueue; tail -f jobqueue | parallel

To submit your jobs to the queue:

echo my_command my_arg >> jobqueue

You can of course use -S to distribute the jobs to remote
 computers:

echo >jobqueue; tail -f jobqueue | parallel -S ..

There is a a small issue when using GNU parallel as queue
 system/batch manager: You have to
submit JobSlot number of jobs before
 they will start, and after that you can submit one at a time, and
job
 will start immediately if free slots are available. Output from the
 running or completed jobs are held
back and will only be printed when
 JobSlots more jobs has been started (unless you use --ungroup or
-u,
 in which case the output from the jobs are printed immediately).
 E.g. if you have 10 jobslots then
the output from the first completed
 job will only be printed when job 11 has started, and the output of

second completed job will only be printed when job 12 has started.

EXAMPLE: GNU Parallel as dir processor
If you have a dir in which users drop files that needs to be processed
 you can do this on GNU/Linux
(If you know what inotifywait is
 called on other platforms file a bug report):

inotifywait -q -m -r -e MOVED_TO -e CLOSE_WRITE --format %w%f my_dir | parallel
 -u echo

This will run the command echo on each file put into my_dir or
 subdirs of my_dir.

You can of course use -S to distribute the jobs to remote
 computers:

inotifywait -q -m -r -e MOVED_TO -e CLOSE_WRITE --format %w%f my_dir
 | parallel -S .. -u
echo

If the files to be processed are in a tar file then unpacking one file
 and processing it immediately may
be faster than first unpacking all
 files. Set up the dir processor as above and unpack into the dir.

Using GNU Parallel as dir processor has the same limitations as using
 GNU Parallel as queue
system/batch manager.

QUOTING
GNU parallel is very liberal in quoting. You only need to quote
 characters that have special meaning
in shell:

() $ ` ' " < > ; | \

and depending on context these needs to be quoted, too:

~ & # ! ? space * {

Therefore most people will never need more quoting than putting '\'
 in front of the special characters.

Often you can simply put \' around every ':

 perl -ne '/^\S+\s+\S+$/ and print $ARGV,"\n"' file

can be quoted:

 parallel perl -ne \''/^\S+\s+\S+$/ and print $ARGV,"\n"'\' ::: file

However, when you want to use a shell variable you need to quote the
 $-sign. Here is an example
using $PARALLEL_SEQ. This variable is set
 by GNU parallel itself, so the evaluation of the $ must
be done by
 the sub shell started by GNU parallel:

seq 10 | parallel -N2 echo seq:\$PARALLEL_SEQ arg1:{1} arg2:{2}

GNU Parallel

Page 36

If the variable is set before GNU parallel starts you can do this:

VAR=this_is_set_before_starting

echo test | parallel echo {} $VAR

Prints: test this_is_set_before_starting

It is a little more tricky if the variable contains more than one space in a row:

VAR="two spaces between each word"

echo test | parallel echo {} \'"$VAR"\'

Prints: test two spaces between each word

If the variable should not be evaluated by the shell starting GNU parallel but be evaluated by the sub
shell started by GNU parallel, then you need to quote it:

echo test | parallel VAR=this_is_set_after_starting \; echo {} \$VAR

Prints: test this_is_set_after_starting

It is a little more tricky if the variable contains space:

echo test | parallel VAR='"two spaces between each word"' echo {} \'"$VAR"\'

Prints: test two spaces between each word

$$ is the shell variable containing the process id of the shell. This
 will print the process id of the shell
running GNU parallel:

seq 10 | parallel echo $$

And this will print the process ids of the sub shells started by GNU parallel.

seq 10 | parallel echo \$\$

If the special characters should not be evaluated by the sub shell
 then you need to protect it against
evaluation from both the shell
 starting GNU parallel and the sub shell:

echo test | parallel echo {} \\\$VAR

Prints: test $VAR

GNU parallel can protect against evaluation by the sub shell by
 using -q:

echo test | parallel -q echo {} \$VAR

Prints: test $VAR

This is particularly useful if you have lots of quoting. If you want to run a perl script like this:

perl -ne '/^\S+\s+\S+$/ and print $ARGV,"\n"' file

It needs to be quoted like this:

ls | parallel perl -ne '/^\\S+\\s+\\S+\$/\ and\ print\ \$ARGV,\"\\n\"' ls | parallel perl -ne
\''/^\S+\s+\S+$/ and print $ARGV,"\n"'\'

Notice how spaces, \'s, "'s, and $'s need to be quoted. GNU parallel
 can do the quoting by using
option -q:

ls | parallel -q perl -ne '/^\S+\s+\S+$/ and print $ARGV,"\n"'

However, this means you cannot make the sub shell interpret special
 characters. For example
because of -q this WILL NOT WORK:

GNU Parallel

Page 37

ls *.gz | parallel -q "zcat {} >{.}"

ls *.gz | parallel -q "zcat {} | bzip2 >{.}.bz2"

because > and | need to be interpreted by the sub shell.

If you get errors like:

 sh: -c: line 0: syntax error near unexpected token
 sh: Syntax error: Unterminated quoted string
 sh: -c: line 0: unexpected EOF while looking for matching `''
 sh: -c: line 1: syntax error: unexpected end of file

then you might try using -q.

If you are using bash process substitution like <(cat foo) then
 you may try -q and prepending
command with bash -c:

ls | parallel -q bash -c 'wc -c <(echo {})'

Or for substituting output:

ls | parallel -q bash -c 'tar c {} | tee >(gzip >{}.tar.gz) | bzip2 >{}.tar.bz2'

Conclusion: To avoid dealing with the quoting problems it may be
 easier just to write a small script or
a function (remember to export -f the function) and have GNU parallel call that.

LIST RUNNING JOBS
If you want a list of the jobs currently running you can run:

killall -USR1 parallel

GNU parallel will then print the currently running jobs on stderr
 (standard error).

COMPLETE RUNNING JOBS BUT DO NOT START NEW JOBS
If you regret starting a lot of jobs you can simply break GNU parallel,
 but if you want to make sure
you do not have half-completed jobs you
 should send the signal SIGTERM to GNU parallel:

killall -TERM parallel

This will tell GNU parallel to not start any new jobs, but wait until
 the currently running jobs are
finished before exiting.

ENVIRONMENT VARIABLES
$PARALLEL_PID

The environment variable $PARALLEL_PID is set by GNU parallel and
 is visible to
the jobs started from GNU parallel. This makes it
 possible for the jobs to
communicate directly to GNU parallel.
 Remember to quote the $, so it gets
evaluated by the correct
 shell.

Example: If each of the jobs tests a solution and one of jobs finds
 the solution the
job can tell GNU parallel not to start more jobs
 by: kill -TERM $PARALLEL_PID.
This only works on the local
 computer.

$PARALLEL_SEQ

$PARALLEL_SEQ will be set to the sequence number of the job
 running. Remember
to quote the $, so it gets evaluated by the correct
 shell.

Example:

seq 10 | parallel -N2 echo seq:'$'PARALLEL_SEQ arg1:{1} arg2:{2}

$TMPDIR

GNU Parallel

Page 38

Directory for temporary files. See: --tmpdir.

$PARALLEL

The environment variable $PARALLEL will be used as default options for
 GNU
parallel. If the variable contains special shell characters
 (e.g. $, *, or space) then
these need to be to be escaped with \.

Example:

cat list | parallel -j1 -k -v ls

can be written as:

cat list | PARALLEL="-kvj1" parallel ls

cat list | parallel -j1 -k -v -S"myssh user@server" ls

can be written as:

cat list | PARALLEL='-kvj1 -S myssh\ user@server' parallel echo

Notice the \ in the middle is needed because 'myssh' and 'user@server'
 must be one
argument.

DEFAULT PROFILE (CONFIG FILE)
The file ~/.parallel/config (formerly known as .parallelrc) will be
 read if it exists. Lines starting with '#'
will be ignored. It can be
 formatted like the environment variable $PARALLEL, but it is often
 easier to
simply put each option on its own line.

Options on the command line takes precedence over the environment
 variable $PARALLEL which
takes precedence over the file
 ~/.parallel/config.

PROFILE FILES
If --profile set, GNU parallel will read the profile from that file instead of
 ~/.parallel/config. You can
have multiple --profiles.

Example: Profile for running a command on every sshlogin in
 ~/.ssh/sshlogins and prepend the output
with the sshlogin:

 echo --tag -S .. --nonall > ~/.parallel/n
 parallel -Jn uptime

Example: Profile for running every command with -j-1 and nice

 echo -j-1 nice > ~/.parallel/nice_profile
 parallel -J nice_profile bzip2 -9 ::: *

Example: Profile for running a perl script before every command:

 echo "perl -e '\$a=\$\$; print \$a,\" \",'\$PARALLEL_SEQ',\" \";';" >
~/.parallel/pre_perl
 parallel -J pre_perl echo ::: *

Note how the $ and " need to be quoted using \.

Example: Profile for running distributed jobs with nice on the
 remote computers:

 echo -S .. nice > ~/.parallel/dist
 parallel -J dist --trc {.}.bz2 bzip2 -9 ::: *

EXIT STATUS
If --halt-on-error 0 or not specified:

GNU Parallel

Page 39

0 All jobs ran without error.

1-253

Some of the jobs failed. The exit status gives the number of failed jobs

254 More than 253 jobs failed.

255 Other error.

If --halt-on-error 1 or 2: Exit status of the failing job.

DIFFERENCES BETWEEN GNU Parallel AND ALTERNATIVES
There are a lot programs with some of the functionality of GNU parallel. GNU parallel strives to
include the best of the
 functionality without sacrificing ease of use.

SUMMARY TABLE
The following features are in some of the comparable tools:

Inputs
 I1. Arguments can be read from stdin
 I2. Arguments can be read from a file
 I3. Arguments can
be read from multiple files
 I4. Arguments can be read from command line
 I5. Arguments can be read
from a table
 I6. Arguments can be read from the same file using #! (shebang)
 I7. Line oriented input
as default (Quoting of special chars not needed)

Manipulation of input
 M1. Composed command
 M2. Multiple arguments can fill up an execution line

M3. Arguments can be put anywhere in the execution line
 M4. Multiple arguments can be put
anywhere in the execution line
 M5. Arguments can be replaced with context
 M6. Input can be treated
as complete execution line

Outputs
 O1. Grouping output so output from different jobs do not mix
 O2. Send stderr (standard error)
to stderr (standard error)
 O3. Send stdout (standard output) to stdout (standard output)
 O4. Order of
output can be same as order of input
 O5. Stdout only contains stdout (standard output) from the
command
 O6. Stderr only contains stderr (standard error) from the command

Execution
 E1. Running jobs in parallel
 E2. List running jobs
 E3. Finish running jobs, but do not start
new jobs
 E4. Number of running jobs can depend on number of cpus
 E5. Finish running jobs, but do
not start new jobs after first failure
 E6. Number of running jobs can be adjusted while running

Remote execution
 R1. Jobs can be run on remote computers
 R2. Basefiles can be transferred
 R3.
Argument files can be transferred
 R4. Result files can be transferred
 R5. Cleanup of transferred files

R6. No config files needed
 R7. Do not run more than SSHD's MaxStartups can handle
 R8.
Configurable SSH command
 R9. Retry if connection breaks occasionally

Semaphore
 S1. Possibility to work as a mutex
 S2. Possibility to work as a counting semaphore

Legend
 - = no
 x = not applicable
 ID = yes

As every new version of the programs are not tested the table may be
 outdated. Please file a
bug-report if you find errors (See REPORTING
 BUGS).

parallel:
 I1 I2 I3 I4 I5 I6 I7
 M1 M2 M3 M4 M5 M6
 O1 O2 O3 O4 O5 O6
 E1 E2 E3 E4 E5 E6
 R1 R2 R3
R4 R5 R6 R7 R8 R9
 S1 S2

xargs:
 I1 I2 - - - - -
 - M2 M3 - - -
 - O2 O3 - O5 O6
 E1 - - - - -
 - - - - - x - - -
 - -

find -exec:
 - - - x - x -
 - M2 M3 - - - -
 - O2 O3 O4 O5 O6
 - - - - - - -
 - - - - - - - - -
 x x

make -j:
 - - - - - - -
 - - - - - -
 O1 O2 O3 - x O6
 E1 - - - E5 -
 - - - - - - - - -
 - -

ppss:
 I1 I2 - - - - I7
 M1 - M3 - - M6
 O1 - - x - -
 E1 E2 ?E3 E4 - -
 R1 R2 R3 R4 - - ?R7 ? ?
 - -

pexec:
 I1 I2 - I4 I5 - -
 M1 - M3 - - M6
 O1 O2 O3 - O5 O6
 E1 - - E4 - E6
 R1 - - - - R6 - - -
 S1 -

GNU Parallel

Page 40

xjobs: TODO - Please file a bug-report if you know what features xjobs
 supports (See REPORTING
BUGS).

prll: TODO - Please file a bug-report if you know what features prll
 supports (See REPORTING
BUGS).

dxargs: TODO - Please file a bug-report if you know what features dxargs
 supports (See
REPORTING BUGS).

mdm/middelman: TODO - Please file a bug-report if you know what
 features mdm/middelman
supports (See REPORTING BUGS).

xapply: TODO - Please file a bug-report if you know what features xapply
 supports (See REPORTING
BUGS).

paexec: TODO - Please file a bug-report if you know what features paexec
 supports (See
REPORTING BUGS).

ClusterSSH: TODO - Please file a bug-report if you know what features ClusterSSH
 supports (See
REPORTING BUGS).

DIFFERENCES BETWEEN xargs AND GNU Parallel
xargs offer some of the same possibilities as GNU parallel.

xargs deals badly with special characters (such as space, ' and
 "). To see the problem try this:

 touch important_file
 touch 'not important_file'
 ls not* | xargs rm
 mkdir -p "My brother's 12\" records"
 ls | xargs rmdir

You can specify -0 or -d "\n", but many input generators are not
 optimized for using NUL as
separator but are optimized for newline as separator. E.g head, tail, awk, ls, echo, sed, tar -v, perl (
-0 and \0 instead of \n), locate
 (requires using -0), find (requires using -print0), grep
 (requires user
to use -z or -Z), sort (requires using -z).

So GNU parallel's newline separation can be emulated with:

cat | xargs -d "\n" -n1 command

xargs can run a given number of jobs in parallel, but has no
 support for running number-of-cpu-cores
jobs in parallel.

xargs has no support for grouping the output, therefore output may
 run together, e.g. the first half of a
line is from one process and
 the last half of the line is from another process. The example Parallel
grep cannot be done reliably with xargs because of
 this. To see this in action try:

 parallel perl -e '\$a=\"1{}\"x10000000\;print\ \$a,\"\\n\"' '>' {} ::: a
b c d e f
 ls -l a b c d e f
 parallel -kP4 -n1 grep 1 > out.par ::: a b c d e f
 echo a b c d e f | xargs -P4 -n1 grep 1 > out.xargs-unbuf
 echo a b c d e f | xargs -P4 -n1 grep --line-buffered 1 >
out.xargs-linebuf
 echo a b c d e f | xargs -n1 grep 1 > out.xargs-serial
 ls -l out*
 md5sum out*

xargs has no support for keeping the order of the output, therefore
 if running jobs in parallel using
xargs the output of the second
 job cannot be postponed till the first job is done.

GNU Parallel

Page 41

xargs has no support for running jobs on remote computers.

xargs has no support for context replace, so you will have to create the
 arguments.

If you use a replace string in xargs (-I) you can not force xargs to use more than one argument.

Quoting in xargs works like -q in GNU parallel. This means
 composed commands and redirection
require using bash -c.

ls | parallel "wc {} > {}.wc"

becomes (assuming you have 8 cores)

ls | xargs -d "\n" -P8 -I {} bash -c "wc {} > {}.wc"

and

ls | parallel "echo {}; ls {}|wc"

becomes (assuming you have 8 cores)

ls | xargs -d "\n" -P8 -I {} bash -c "echo {}; ls {}|wc"

DIFFERENCES BETWEEN find -exec AND GNU Parallel
find -exec offer some of the same possibilities as GNU parallel.

find -exec only works on files. So processing other input (such as
 hosts or URLs) will require creating
these inputs as files. find
 -exec has no support for running commands in parallel.

DIFFERENCES BETWEEN make -j AND GNU Parallel
make -j can run jobs in parallel, but requires a crafted Makefile
 to do this. That results in extra quoting
to get filename containing
 newline to work correctly.

make -j has no support for grouping the output, therefore output
 may run together, e.g. the first half of
a line is from one process
 and the last half of the line is from another process. The example Parallel
grep cannot be done reliably with make -j because of
 this.

(Very early versions of GNU parallel were coincidently implemented
 using make -j).

DIFFERENCES BETWEEN ppss AND GNU Parallel
ppss is also a tool for running jobs in parallel.

The output of ppss is status information and thus not useful for
 using as input for another command.
The output from the jobs are put
 into files.

The argument replace string ($ITEM) cannot be changed. Arguments must
 be quoted - thus
arguments containing special characters (space '"&!*)
 may cause problems. More than one argument
is not supported. File
 names containing newlines are not processed correctly. When reading
 input
from a file null cannot be used as a terminator. ppss needs
 to read the whole input file before starting
any jobs.

Output and status information is stored in ppss_dir and thus requires
 cleanup when completed. If the
dir is not removed before running ppss again it may cause nothing to happen as ppss thinks the
 task
is already done. GNU parallel will normally not need cleaning
 up if running locally and will only need
cleaning up if stopped
 abnormally and running remote (--cleanup may not complete if
 stopped
abnormally). The example Parallel grep would require extra
 postprocessing if written using ppss.

For remote systems PPSS requires 3 steps: config, deploy, and
 start. GNU parallel only requires one
step.

EXAMPLES FROM ppss MANUAL

Here are the examples from ppss's manual page with the equivalent
 using GNU parallel:

GNU Parallel

Page 42

1 ./ppss.sh standalone -d /path/to/files -c 'gzip '

1 find /path/to/files -type f | parallel gzip

2 ./ppss.sh standalone -d /path/to/files -c 'cp "$ITEM" /destination/dir '

2 find /path/to/files -type f | parallel cp {} /destination/dir

3 ./ppss.sh standalone -f list-of-urls.txt -c 'wget -q '

3 parallel -a list-of-urls.txt wget -q

4 ./ppss.sh standalone -f list-of-urls.txt -c 'wget -q "$ITEM"'

4 parallel -a list-of-urls.txt wget -q {}

5 ./ppss config -C config.cfg -c 'encode.sh ' -d /source/dir -m
 192.168.1.100 -u ppss -k ppss-key.key
-S ./encode.sh -n nodes.txt -o
 /some/output/dir --upload --download ; ./ppss deploy -C config.cfg ;

./ppss start -C config

5 # parallel does not use configs. If you want a different username put it in nodes.txt: user@hostname

5 find source/dir -type f | parallel --sshloginfile nodes.txt --trc {.}.mp3 lame -a {} -o {.}.mp3 --preset
standard --quiet

6 ./ppss stop -C config.cfg

6 killall -TERM parallel

7 ./ppss pause -C config.cfg

7 Press: CTRL-Z or killall -SIGTSTP parallel

8 ./ppss continue -C config.cfg

8 Enter: fg or killall -SIGCONT parallel

9 ./ppss.sh status -C config.cfg

9 killall -SIGUSR2 parallel

DIFFERENCES BETWEEN pexec AND GNU Parallel
pexec is also a tool for running jobs in parallel.

Here are the examples from pexec's info page with the equivalent
 using GNU parallel:

1 pexec -o sqrt-%s.dat -p "$(seq 10)" -e NUM -n 4 -c -- \
 'echo "scale=10000;sqrt($NUM)" | bc'

1 seq 10 | parallel -j4 'echo "scale=10000;sqrt({})" | bc > sqrt-{}.dat'

2 pexec -p "$(ls myfiles*.ext)" -i %s -o %s.sort -- sort

2 ls myfiles*.ext | parallel sort {} ">{}.sort"

3 pexec -f image.list -n auto -e B -u star.log -c -- \
 'fistar $B.fits -f 100 -F id,x,y,flux -o $B.star'

3 parallel -a image.list \
 'fistar {}.fits -f 100 -F id,x,y,flux -o {}.star' 2>star.log

4 pexec -r *.png -e IMG -c -o - -- \
 'convert $IMG ${IMG%.png}.jpeg ; "echo $IMG: done"'

4 ls *.png | parallel 'convert {} {.}.jpeg; echo {}: done'

5 pexec -r *.png -i %s -o %s.jpg -c 'pngtopnm | pnmtojpeg'

5 ls *.png | parallel 'pngtopnm < {} | pnmtojpeg > {}.jpg'

6 for p in *.png ; do echo ${p%.png} ; done | \
 pexec -f - -i %s.png -o %s.jpg -c 'pngtopnm | pnmtojpeg'

GNU Parallel

Page 43

6 ls *.png | parallel 'pngtopnm < {} | pnmtojpeg > {.}.jpg'

7 LIST=$(for p in *.png ; do echo ${p%.png} ; done)
 pexec -r $LIST -i %s.png -o %s.jpg -c 'pngtopnm |
pnmtojpeg'

7 ls *.png | parallel 'pngtopnm < {} | pnmtojpeg > {.}.jpg'

8 pexec -n 8 -r *.jpg -y unix -e IMG -c \
 'pexec -j -m blockread -d $IMG | \
 jpegtopnm | pnmscale 0.5 |
pnmtojpeg | \
 pexec -j -m blockwrite -s th_$IMG'

8 Combining GNU parallel and GNU sem.

8 ls *jpg | parallel -j8 'sem --id blockread cat {} | jpegtopnm |' \
 'pnmscale 0.5 | pnmtojpeg | sem --id
blockwrite cat > th_{}'

8 If reading and writing is done to the same disk, this may be
 faster as only one process will be either
reading or writing:

8 ls *jpg | parallel -j8 'sem --id diskio cat {} | jpegtopnm |' \
 'pnmscale 0.5 | pnmtojpeg | sem --id diskio
cat > th_{}'

DIFFERENCES BETWEEN xjobs AND GNU Parallel
xjobs is also a tool for running jobs in parallel. It only supports
 running jobs on your local computer.

xjobs deals badly with special characters just like xargs. See
 the section DIFFERENCES BETWEEN
xargs AND GNU Parallel.

Here are the examples from xjobs's man page with the equivalent
 using GNU parallel:

1 ls -1 *.zip | xjobs unzip

1 ls *.zip | parallel unzip

2 ls -1 *.zip | xjobs -n unzip

2 ls *.zip | parallel unzip >/dev/null

3 find . -name '*.bak' | xjobs gzip

3 find . -name '*.bak' | parallel gzip

4 ls -1 *.jar | sed 's/\(.*\)/\1 > \1.idx/' | xjobs jar tf

4 ls *.jar | parallel jar tf {} '>' {}.idx

5 xjobs -s script

5 cat script | parallel

6 mkfifo /var/run/my_named_pipe;
 xjobs -s /var/run/my_named_pipe &
 echo unzip 1.zip >>
/var/run/my_named_pipe;
 echo tar cf /backup/myhome.tar /home/me >> /var/run/my_named_pipe

6 mkfifo /var/run/my_named_pipe;
 cat /var/run/my_named_pipe | parallel &
 echo unzip 1.zip >>
/var/run/my_named_pipe;
 echo tar cf /backup/myhome.tar /home/me >> /var/run/my_named_pipe

DIFFERENCES BETWEEN prll AND GNU Parallel
prll is also a tool for running jobs in parallel. It does not
 support running jobs on remote computers.

prll encourages using BASH aliases and BASH functions instead of
 scripts. GNU parallel will never
support running aliases (see why
 http://www.perlmonks.org/index.pl?node_id=484296). However,
scripts,
 composed commands, or functions exported with export -f work just
 fine.

prll generates a lot of status information on stderr (standard
 error) which makes it harder to use the
stderr (standard error) output
 of the job directly as input for another program.

GNU Parallel

Page 44

Here is the example from prll's man page with the equivalent
 using GNU parallel:

prll -s 'mogrify -flip $1' *.jpg

parallel mogrify -flip ::: *.jpg

DIFFERENCES BETWEEN dxargs AND GNU Parallel
dxargs is also a tool for running jobs in parallel.

dxargs does not deal well with more simultaneous jobs than SSHD's
 MaxStartups. dxargs is only
built for remote run jobs, but does not
 support transferring of files.

DIFFERENCES BETWEEN mdm/middleman AND GNU Parallel
middleman(mdm) is also a tool for running jobs in parallel.

Here are the shellscripts of http://mdm.berlios.de/usage.html ported
 to GNU parallel:

seq 19 | parallel buffon -o - | sort -n > result

cat files | parallel cmd

find dir -execdir sem cmd {} \;

DIFFERENCES BETWEEN xapply AND GNU Parallel
xapply can run jobs in parallel on the local computer.

Here are the examples from xapply's man page with the equivalent
 using GNU parallel:

1 xapply '(cd %1 && make all)' */

1 parallel 'cd {} && make all' ::: */

2 xapply -f 'diff %1 ../version5/%1' manifest | more

2 parallel diff {} ../version5/{} < manifest | more

3 xapply -p/dev/null -f 'diff %1 %2' manifest1 checklist1

3 parallel --xapply diff {1} {2} :::: manifest1 checklist1

4 xapply 'indent' *.c

4 parallel indent ::: *.c

5 find ~ksb/bin -type f ! -perm -111 -print | xapply -f -v 'chmod a+x' -

5 find ~ksb/bin -type f ! -perm -111 -print | parallel -v chmod a+x

6 find */ -... | fmt 960 1024 | xapply -f -i /dev/tty 'vi' -

6 sh <(find */ -... | parallel -s 1024 echo vi)

6 find */ -... | parallel -s 1024 -Xuj1 vi

7 find ... | xapply -f -5 -i /dev/tty 'vi' - - - - -

7 sh <(find ... |parallel -n5 echo vi)

7 find ... |parallel -n5 -uj1 vi

8 xapply -fn "" /etc/passwd

8 parallel -k echo < /etc/passwd

9 tr ':' '\012' < /etc/passwd | xapply -7 -nf 'chown %1 %6' - - - - - - -

GNU Parallel

Page 45

9 tr ':' '\012' < /etc/passwd | parallel -N7 chown {1} {6}

10 xapply '[-d %1/RCS] || echo %1' */

10 parallel '[-d {}/RCS] || echo {}' ::: */

11 xapply -f '[-f %1] && echo %1' List | ...

11 parallel '[-f {}] && echo {}' < List | ...

DIFFERENCES BETWEEN paexec AND GNU Parallel
paexec can run jobs in parallel on both the local and remote computers.

paexec requires commands to print a blank line as the last
 output. This means you will have to write a
wrapper for most programs.

paexec has a job dependency facility so a job can depend on another
 job to be executed
successfully. Sort of a poor-man's make.

Here are the examples from paexec's example catalog with the equivalent
 using GNU parallel:

1_div_X_run:

 ../../paexec -s -l -c "`pwd`/1_div_X_cmd" -n +1 <<EOF [...]
 parallel echo {} '|' `pwd`/1_div_X_cmd <<EOF [...]

all_substr_run:

 ../../paexec -lp -c "`pwd`/all_substr_cmd" -n +3 <<EOF [...]
 parallel echo {} '|' `pwd`/all_substr_cmd <<EOF [...]

cc_wrapper_run:

 ../../paexec -c "env CC=gcc CFLAGS=-O2 `pwd`/cc_wrapper_cmd" \
 -n 'host1 host2' \
 -t '/usr/bin/ssh -x' <<EOF [...]
 parallel echo {} '|' "env CC=gcc CFLAGS=-O2 `pwd`/cc_wrapper_cmd" \
 -S host1,host2 <<EOF [...]
 # This is not exactly the same, but avoids the wrapper
 parallel gcc -O2 -c -o {.}.o {} \
 -S host1,host2 <<EOF [...]

toupper_run:

 ../../paexec -lp -c "`pwd`/toupper_cmd" -n +10 <<EOF [...]
 parallel echo {} '|' ./toupper_cmd <<EOF [...]
 # Without the wrapper:
 parallel echo {} '| awk {print\ toupper\(\$0\)}' <<EOF [...]

DIFFERENCES BETWEEN map AND GNU Parallel
map sees it as a feature to have less features and in doing so it
 also handles corner cases
incorrectly. A lot of GNU parallel's code
 is to handle corner cases correctly on every platform, so you
will not
 get a nasty surprise if a user for example saves a file called: My
 brother's 12" records.txt

map's example showing how to deal with special characters fails on
 special characters:

 echo "The Cure" > My\ brother\'s\ 12\"\ records

 ls | map 'echo -n `gzip < "%" | wc -c`; echo -n '*100/'; wc -c < "%"' |
bc

GNU Parallel

Page 46

It works with GNU parallel:

 ls | parallel 'echo -n `gzip < {} | wc -c`; echo -n '*100/'; wc -c < {}'
| bc

And you can even get the file name prepended:

 ls | parallel --tag '(echo -n `gzip < {} | wc -c`'*100/'; wc -c < {}) |
bc'

map has no support for grouping. So this gives the wrong results
 without any warnings:

 parallel perl -e '\$a=\"1{}\"x10000000\;print\ \$a,\"\\n\"' '>' {} ::: a
b c d e f
 ls -l a b c d e f
 parallel -kP4 -n1 grep 1 > out.par ::: a b c d e f
 map -p 4 'grep 1' a b c d e f > out.map-unbuf
 map -p 4 'grep --line-buffered 1' a b c d e f > out.map-linebuf
 map -p 1 'grep --line-buffered 1' a b c d e f > out.map-serial
 ls -l out*
 md5sum out*

The documentation shows a workaround, but not only does that mix
 stdout (standard output) with
stderr (standard error) it also fails
 completely for certain jobs (and may even be considered less
readable):

 parallel echo -n {} ::: 1 2 3

 map -p 4 'echo -n % 2>&1 | sed -e "s/^/$$:/"' 1 2 3 | sort | cut -f2- -d:

map cannot handle bundled options: map -vp 0 echo this fails

map does not have an argument separator on the command line, but
 uses the first argument as
command. This makes quoting harder which again
 may affect readability. Compare:

 map -p 2 perl\\\ -ne\\\ \\\'/^\\\\S+\\\\s+\\\\S+\\\$/\\\ and\\\ print\\\
\\\$ARGV,\\\"\\\\n\\\"\\\' *

 parallel -q perl -ne '/^\S+\s+\S+$/ and print $ARGV,"\n"' ::: *

map can do multiple arguments with context replace, but not without
 context replace:

 parallel --xargs echo 'BEGIN{'{}'}END' ::: 1 2 3

map does not set exit value according to whether one of the jobs
 failed:

 parallel false ::: 1 || echo Job failed

 map false 1 || echo Never run

map requires Perl v5.10.0 making it harder to use on old systems.

map has no way of using % in the command (GNU Parallel has -I to
 specify another replacement
string than {}).

By design map is option incompatible with xargs, it does not
 have remote job execution, a structured
way of saving results,
 multiple input sources, progress indicator, configurable record
 delimiter (only

GNU Parallel

Page 47

field delimiter), logging of jobs run with possibility
 to resume, keeping the output in the same order as
input, --pipe
 processing, and dynamically timeouts.

DIFFERENCES BETWEEN ClusterSSH AND GNU Parallel
ClusterSSH solves a different problem than GNU parallel.

ClusterSSH opens a terminal window for each computer and using a
 master window you can run the
same command on all the computers. This
 is typically used for administrating several computers that
are almost
 identical.

GNU parallel runs the same (or different) commands with different
 arguments in parallel possibly
using remote computers to help
 computing. If more than one computer is listed in -S GNU parallel
may
 only use one of these (e.g. if there are 8 jobs to be run and one
 computer has 8 cores).

GNU parallel can be used as a poor-man's version of ClusterSSH:

parallel --nonall -S server-a,server-b do_stuff foo bar

BUGS
Quoting of newline

Because of the way newline is quoted this will not work:

echo 1,2,3 | parallel -vkd, "echo 'a{}b'"

However, these will all work:

echo 1,2,3 | parallel -vkd, echo a{}b

echo 1,2,3 | parallel -vkd, "echo 'a'{}'b'"

echo 1,2,3 | parallel -vkd, "echo 'a'"{}"'b'"

Speed
Startup

GNU parallel is slow at starting up - around 250 ms. Half of the
 startup time is spent finding the
maximal length of a command
 line. Setting -s will remove this part of the startup time.

Job startup

Starting a job on the local machine takes around 3 ms. This can be a
 big overhead if the job takes
very few ms to run. Often you can group
 small jobs together using -X which will make the overhead
less
 significant.

Using --ungroup the 3 ms can be lowered to around 2 ms.

SSH

When using multiple computers GNU parallel opens ssh connections
 to them to figure out how many
connections can be used reliably
 simultaneously (Namely SSHD's MaxStartups). This test is done for
each
 host in serial, so if your --sshloginfile contains many hosts it may
 be slow.

If your jobs are short you may see that there are fewer jobs running
 on the remove systems than
expected. This is due to time spent logging
 in and out. -M may help here.

Disk access

A single disk can normally read data faster if it reads one file at a
 time instead of reading a lot of files
in parallel, as this will avoid
 disk seeks. However, newer disk systems with multiple drives can read

faster if reading from multiple files in parallel.

If the jobs are of the form read-all-compute-all-write-all, so
 everything is read before anything is
written, it may be faster to
 force only one disk access at the time:

 sem --id diskio cat file | compute | sem --id diskio cat > file

GNU Parallel

Page 48

If the jobs are of the form read-compute-write, so writing starts
 before all reading is done, it may be
faster to force only one reader
 and writer at the time:

 sem --id read cat file | compute | sem --id write cat > file

If the jobs are of the form read-compute-read-compute, it may be
 faster to run more jobs in parallel
than the system has CPUs, as some
 of the jobs will be stuck waiting for disk access.

--nice limits command length
The current implementation of --nice is too pessimistic in the max
 allowed command length. It only
uses a little more than half of what
 it could. This affects -X and -m. If this becomes a real problem for

you file a bug-report.

Aliases and functions do not work
If you get:

Can't exec "command": No such file or directory

or:

open3: exec of by command failed

it may be because command is not known, but it could also be
 because command is an alias or a
function. If it is a function you
 need to export -f the function first. An alias will, however, not
 work (see
why http://www.perlmonks.org/index.pl?node_id=484296), so
 change your alias to a script.

REPORTING BUGS
Report bugs to <bug-parallel@gnu.org> or

https://savannah.gnu.org/bugs/?func=additem&group=parallel

Your bug report should always include:

The error message you get (if any).

The complete output of parallel --version. If you are not running
 the latest released version you
should specify why you believe the
 problem is not fixed in that version.

A complete example that others can run that shows the problem. This
 should preferably be small
and simple. A combination of yes, seq, cat, echo, and sleep can reproduce most errors. If
 your
example requires large files, see if you can make them by
 something like seq 1000000 > file or
yes | head -n 10000000 > file. If your example requires remote execution, see if you can
 use
localhost - maybe using another login.

The output of your example. If your problem is not easily reproduced
 by others, the output might
help them figure out the problem.

Whether you have watched the intro videos

(http://www.youtube.com/playlist?list=PL284C9FF2488BC6D1), walked
 through the tutorial (man
parallel_tutorial), and read the EXAMPLE
 section in the man page (man parallel - search for
EXAMPLE:).

If you suspect the error is dependent on your environment or
 distribution, please see if you can
reproduce the error on one of
 these VirtualBox images:

http://sourceforge.net/projects/virtualboximage/files/

Specifying the name of your distribution is not enough as you may have
 installed software that is not
in the VirtualBox images.

If you cannot reproduce the error on any of the VirtualBox images
 above, you should assume the
debugging will be done through you. That
 will put more burden on you and it is extra important you
give any
 information that help. In general the problem will be fixed faster and
 with less work for you if

GNU Parallel

Page 49

you can reproduce the error on a VirtualBox.

AUTHOR
When using GNU parallel for a publication please cite:

O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login:
 The USENIX Magazine,
February 2011:42-47.

Copyright (C) 2007-10-18 Ole Tange, http://ole.tange.dk

Copyright (C) 2008,2009,2010 Ole Tange, http://ole.tange.dk

Copyright (C) 2010,2011,2012,2013,2014 Ole Tange, http://ole.tange.dk
 and Free Software
Foundation, Inc.

Parts of the manual concerning xargs compatibility is inspired by
 the manual of xargs from GNU
findutils 4.4.2.

LICENSE
Copyright (C) 2007,2008,2009,2010,2011,2012,2013 Free Software Foundation,
 Inc.

This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU
General Public License as published by
 the Free Software Foundation; either version 3 of the
License, or
 at your option any later version.

This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without
even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the
 GNU General Public License for more details.

You should have received a copy of the GNU General Public License
 along with this program. If not,
see <http://www.gnu.org/licenses/>.

Documentation license I
Permission is granted to copy, distribute and/or modify this documentation
 under the terms of the
GNU Free Documentation License, Version 1.3 or
 any later version published by the Free Software
Foundation; with no
 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
 Texts. A
copy of the license is included in the file fdl.txt.

Documentation license II
You are free:

to Share

to copy, distribute and transmit the work

to Remix

to adapt the work

Under the following conditions:

Attribution

You must attribute the work in the manner specified by the author or
 licensor (but not
in any way that suggests that they endorse you or
 your use of the work).

Share Alike

If you alter, transform, or build upon this work, you may distribute
 the resulting work
only under the same, similar or a compatible
 license.

With the understanding that:

Waiver

GNU Parallel

Page 50

Any of the above conditions can be waived if you get permission from
 the copyright
holder.

Public Domain

Where the work or any of its elements is in the public domain under
 applicable law,
that status is in no way affected by the license.

Other Rights

In no way are any of the following rights affected by the license:

Your fair dealing or fair use rights, or other applicable
 copyright exceptions and
limitations;

The author's moral rights;

Rights other persons may have either in the work itself or in
 how the work is
used, such as publicity or privacy rights.

Notice

For any reuse or distribution, you must make clear to others the
 license terms of this
work.

A copy of the full license is included in the file as cc-by-sa.txt.

DEPENDENCIES
GNU parallel uses Perl, and the Perl modules Getopt::Long,
 IPC::Open3, Symbol, IO::File, POSIX,
and File::Temp. For remote usage
 it also uses rsync with ssh.

SEE ALSO
ssh(1), rsync(1), find(1), xargs(1), dirname(1), make(1), pexec(1), ppss(1), xjobs(1), prll(1),
dxargs(1), mdm(1)

