find-optimal: Initial version. Limited to continous float values.
This commit is contained in:
parent
1483a6c011
commit
231fcf3759
21
Makefile
21
Makefile
|
@ -1,8 +1,8 @@
|
|||
CMD = 2grep 2search blink burncpu bwlimit drac duplicate-packets em \
|
||||
emoticons encdir fanspeed field find-first-fail forever \
|
||||
fxkill G gitnext gitundo goodpasswd histogram Loffice mtrr \
|
||||
mirrorpdf neno not off pdfman pidcmd pidtree plotpipe puniq \
|
||||
ramusage rand rclean rina rn rrm seekmaniac shython \
|
||||
emoticons encdir fanspeed field find-first-fail find-optimal \
|
||||
forever fxkill G gitnext gitundo goodpasswd histogram Loffice \
|
||||
mtrr mirrorpdf neno not off pdfman pidcmd pidtree plotpipe \
|
||||
puniq ramusage rand rclean rina rn rrm seekmaniac shython \
|
||||
sound-reload splitvideo stdout swapout T teetime timestamp \
|
||||
tracefile transpose upsidedown vid w4it-for-port-open \
|
||||
whitehash wifi-reload wssh youtube-lbry ytv yyyymmdd
|
||||
|
@ -10,12 +10,13 @@ CMD = 2grep 2search blink burncpu bwlimit drac duplicate-packets em \
|
|||
all: 2search/2grep.1 2search/2search.1 blink/blink.1 \
|
||||
burncpu/burncpu.1 bwlimit/bwlimit.1 drac/drac.1 \
|
||||
encdir/encdir.1 fanspeed/fanspeed.1 field/field.1 \
|
||||
find-first-fail/find-first-fail.1 G/G.1 gitnext/gitnext.1 \
|
||||
gitundo/gitundo.1 goodpasswd/goodpasswd.1 \
|
||||
histogram/histogram.1 mirrorpdf/mirrorpdf.1 neno/neno.1 \
|
||||
off/off.1 pdfman/pdfman.1 pidcmd/pidcmd.1 pidtree/pidtree.1 \
|
||||
plotpipe/plotpipe.1 puniq/puniq.1 rand/rand.1 rina/rina.1 \
|
||||
rn/rn.1 rrm/rrm.1 seekmaniac/seekmaniac.1 shython/shython.1 \
|
||||
find-first-fail/find-first-fail.1 find-optimal/find-optimal.1 \
|
||||
G/G.1 gitnext/gitnext.1 gitundo/gitundo.1 \
|
||||
goodpasswd/goodpasswd.1 histogram/histogram.1 \
|
||||
mirrorpdf/mirrorpdf.1 neno/neno.1 off/off.1 pdfman/pdfman.1 \
|
||||
pidcmd/pidcmd.1 pidtree/pidtree.1 plotpipe/plotpipe.1 \
|
||||
puniq/puniq.1 rand/rand.1 rina/rina.1 rn/rn.1 rrm/rrm.1 \
|
||||
seekmaniac/seekmaniac.1 shython/shython.1 \
|
||||
sound-reload/sound-reload.1 splitvideo/splitvideo.1 \
|
||||
stdout/stdout.1 teetime/teetime.1 timestamp/timestamp.1 \
|
||||
tracefile/tracefile.1 transpose/transpose.1 T/T.1 \
|
||||
|
|
274
find-optimal/find-optimal
Executable file
274
find-optimal/find-optimal
Executable file
|
@ -0,0 +1,274 @@
|
|||
#!/usr/bin/python3
|
||||
|
||||
'''=pod
|
||||
|
||||
=head1 NAME
|
||||
|
||||
find-optimal - Find optimal values
|
||||
|
||||
|
||||
=head1 SYNOPSIS
|
||||
|
||||
B<find-optimal> I<command> [[options] I<value>] [options]
|
||||
|
||||
|
||||
=head1 DESCRIPTION
|
||||
|
||||
B<find-optimal> will search for the optimal values for options.
|
||||
|
||||
It does this by calling I<command> with different values.
|
||||
|
||||
I<command> must as the last line output a value that says how bad it
|
||||
was. B<find-optimal> will search for the smallest value.
|
||||
|
||||
|
||||
=head1 EXAMPLE
|
||||
|
||||
Find the best value of pi - use 10 as a starting guess:
|
||||
|
||||
pi() { perl -e 'print(abs(shift()-3.14159265))' -- "$@"; }
|
||||
export -f pi
|
||||
find-optimal pi 10
|
||||
|
||||
Find the best values of pi and e - use 10 as starting guess for pi,
|
||||
and 100 for e:
|
||||
|
||||
pie() { perl -e 'print(abs(shift()-3.14159265)+abs(shift()-2.718281828))' -- "$@"; }
|
||||
export -f pie
|
||||
find-optimal pie 10 100
|
||||
|
||||
=cut
|
||||
#Find the fastest block size for dd
|
||||
#
|
||||
# mydd() { ( \time -f%e dd bs=$@ if=/dev/zero | head -c1G >/dev/null) 2>&1;}
|
||||
# export -f mydd
|
||||
# find-optimal mydd 10
|
||||
# find-optimal -i --min 1 mydd 10
|
||||
=pod
|
||||
|
||||
=head1 BUGS
|
||||
|
||||
B<find-optimal> used Nelder-Mead. Unfortunately, this only works well
|
||||
for continous functions and not integers.
|
||||
|
||||
So currently B<find-optimal> will not work well for integers.
|
||||
|
||||
|
||||
=head1 AUTHOR
|
||||
|
||||
Copyright (C) 2022 Ole Tange,
|
||||
http://ole.tange.dk and Free Software Foundation, Inc.
|
||||
|
||||
|
||||
=head1 LICENSE
|
||||
|
||||
Copyright (C) 2012 Free Software Foundation, Inc.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 3 of the License, or
|
||||
at your option any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
|
||||
=head1 DEPENDENCIES
|
||||
|
||||
B<vid> uses B<G>, and B<vlc>.
|
||||
|
||||
|
||||
=head1 SEE ALSO
|
||||
|
||||
B<G>
|
||||
|
||||
|
||||
=cut
|
||||
|
||||
'''
|
||||
|
||||
def add(x,y):
|
||||
z = list(0 for i in x)
|
||||
for i in range(0,len(x)):
|
||||
z[i] = x[i] + y[i]
|
||||
return (z)
|
||||
|
||||
def sub(x,y):
|
||||
z = list(0 for i in x)
|
||||
for i in range(0,len(x)):
|
||||
z[i] = x[i] - y[i]
|
||||
return (z)
|
||||
|
||||
def mul(x,y):
|
||||
z = list(0 for i in y)
|
||||
for i in range(0,len(y)):
|
||||
z[i] = x * y[i]
|
||||
return (z)
|
||||
|
||||
def nelder_mead(f, x_start,
|
||||
step=0.001, no_improve_thr=10e-6,
|
||||
no_improv_break=10, max_iter=0,
|
||||
alpha=1., gamma=2., rho=-0.5, sigma=0.5):
|
||||
'''
|
||||
Pure Python implementation of the Nelder-Mead algorithm.
|
||||
Reference: https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
|
||||
MIT Licence. Copyright (c) 2017 Matteo Maggioni
|
||||
@param f (function): function to optimize, must return a scalar score
|
||||
and operate over a numpy array of the same dimensions as x_start
|
||||
@param x_start (numpy array): initial position
|
||||
@param step (float): look-around radius in initial step
|
||||
@no_improv_thr, no_improv_break (float, int): break after no_improv_break iterations with
|
||||
an improvement lower than no_improv_thr
|
||||
@max_iter (int): always break after this number of iterations.
|
||||
Set it to 0 to loop indefinitely.
|
||||
@alpha, gamma, rho, sigma (floats): parameters of the algorithm
|
||||
(see Wikipedia page for reference)
|
||||
|
||||
return: tuple (best parameter array, best score)
|
||||
'''
|
||||
|
||||
# init
|
||||
dim = len(x_start)
|
||||
prev_best = f(x_start)
|
||||
no_improv = 0
|
||||
res = [[x_start, prev_best]]
|
||||
|
||||
for i in range(dim):
|
||||
x = mul(1,x_start)
|
||||
x[i] = x[i] + step
|
||||
score = f(x)
|
||||
res.append([x, score])
|
||||
|
||||
# simplex iter
|
||||
iters = 0
|
||||
while 1:
|
||||
# order
|
||||
res.sort(key=lambda x: x[1])
|
||||
best = res[0][1]
|
||||
|
||||
# break after max_iter
|
||||
if max_iter and iters >= max_iter:
|
||||
return res[0]
|
||||
iters += 1
|
||||
|
||||
if best < prev_best - no_improve_thr:
|
||||
no_improv = 0
|
||||
prev_best = best
|
||||
else:
|
||||
no_improv += 1
|
||||
|
||||
if no_improv >= no_improv_break:
|
||||
return res[0]
|
||||
|
||||
# centroid
|
||||
x0 = [0.] * dim
|
||||
for tup in res[:-1]:
|
||||
for i, c in enumerate(tup[0]):
|
||||
x0[i] += c / (len(res)-1)
|
||||
|
||||
# reflection
|
||||
xr = add(x0, mul(alpha,(sub(x0, res[-1][0]))))
|
||||
rscore = f(xr)
|
||||
if res[0][1] <= rscore < res[-2][1]:
|
||||
del res[-1]
|
||||
res.append([xr, rscore])
|
||||
continue
|
||||
|
||||
# expansion
|
||||
if rscore < res[0][1]:
|
||||
xe = add(x0, mul(gamma,(sub(x0, res[-1][0]))))
|
||||
escore = f(xe)
|
||||
if escore < rscore:
|
||||
del res[-1]
|
||||
res.append([xe, escore])
|
||||
continue
|
||||
else:
|
||||
del res[-1]
|
||||
res.append([xr, rscore])
|
||||
continue
|
||||
|
||||
# contraction
|
||||
xc = add(x0, mul(rho,(sub(x0, res[-1][0]))))
|
||||
cscore = f(xc)
|
||||
if cscore < res[-1][1]:
|
||||
del res[-1]
|
||||
res.append([xc, cscore])
|
||||
continue
|
||||
|
||||
# reduction
|
||||
x1 = res[0][0]
|
||||
nres = []
|
||||
for tup in res:
|
||||
redx = add(x1, mul(sigma,(sub(tup[0],x1))))
|
||||
score = f(redx)
|
||||
nres.append([redx, score])
|
||||
res = nres
|
||||
|
||||
def test():
|
||||
import math
|
||||
|
||||
def f(x):
|
||||
return math.sin(x[0]) * math.cos(x[1]) * (1. / (abs(x[2]) + 1))
|
||||
|
||||
print(nelder_mead(f, list([0., 20., 0.])))
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
import subprocess
|
||||
import re
|
||||
opt_verbose=True
|
||||
def f(x):
|
||||
# Run the shell command with the numeric values
|
||||
# return the value of last line of output
|
||||
run_arr=[]
|
||||
i=0
|
||||
for s in cmdtemplate:
|
||||
if s == "0":
|
||||
v = x[i];
|
||||
try:
|
||||
if opt_integer:
|
||||
v = int(v)
|
||||
if v < opt_min:
|
||||
v = opt_min
|
||||
except NameError:
|
||||
True
|
||||
run_arr.append(str(v))
|
||||
i += 1
|
||||
else:
|
||||
run_arr.append(s)
|
||||
run = ' '.join(run_arr)
|
||||
try:
|
||||
if opt_verbose:
|
||||
print(run)
|
||||
except NameError:
|
||||
True
|
||||
# Last line of stdout
|
||||
try:
|
||||
return float(subprocess.check_output(args=run,
|
||||
shell=True,
|
||||
executable='/bin/bash')
|
||||
.splitlines()[-1])
|
||||
except IndexError:
|
||||
print("Command returns nothing.")
|
||||
exit(1);
|
||||
except subprocess.CalledProcessError:
|
||||
exit(1);
|
||||
|
||||
cmdtemplate = []
|
||||
values = []
|
||||
# Convert:
|
||||
# cmd -s 6 -f 7 -o foo
|
||||
# =>
|
||||
# [cmd -s 0 -f 0 -o foo],[6,7]
|
||||
for s in sys.argv[1:]:
|
||||
if re.match(r'^[-0-9.]+$',s):
|
||||
values.append(s)
|
||||
cmdtemplate.append("0")
|
||||
else:
|
||||
cmdtemplate.append(s)
|
||||
print(nelder_mead(f, list([float(i) for i in values])))
|
Loading…
Reference in a new issue