cat/src/Cat/Wishlist.agda

16 lines
534 B
Agda
Raw Normal View History

module Cat.Wishlist where
2018-02-19 10:25:16 +00:00
open import Level
open import Cubical.NType
open import Data.Nat using (_≤_ ; z≤n ; s≤s)
postulate ntypeCommulative : { n m} {A : Set } n m HasLevel n ⟩₋₂ A HasLevel m ⟩₋₂ A
2018-02-19 10:25:16 +00:00
module _ { : Level} {A : Set } where
-- This is §7.1.10 in [HoTT]. Andrea says the proof is in `cubical` but I
-- can't find it.
postulate propHasLevel : n isProp (HasLevel n A)
isSetIsProp : isProp (isSet A)
isSetIsProp = propHasLevel (S (S ⟨-2⟩))