16 lines
534 B
Agda
16 lines
534 B
Agda
module Cat.Wishlist where
|
||
|
||
open import Level
|
||
open import Cubical.NType
|
||
open import Data.Nat using (_≤_ ; z≤n ; s≤s)
|
||
|
||
postulate ntypeCommulative : ∀ {ℓ n m} {A : Set ℓ} → n ≤ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A
|
||
|
||
module _ {ℓ : Level} {A : Set ℓ} where
|
||
-- This is §7.1.10 in [HoTT]. Andrea says the proof is in `cubical` but I
|
||
-- can't find it.
|
||
postulate propHasLevel : ∀ n → isProp (HasLevel n A)
|
||
|
||
isSetIsProp : isProp (isSet A)
|
||
isSetIsProp = propHasLevel (S (S ⟨-2⟩))
|