197 lines
6.9 KiB
Agda
197 lines
6.9 KiB
Agda
|
{-# OPTIONS --cubical #-}
|
|||
|
|
|||
|
module Category where
|
|||
|
|
|||
|
open import Agda.Primitive
|
|||
|
open import Data.Unit.Base
|
|||
|
open import Data.Product
|
|||
|
open import Cubical.PathPrelude
|
|||
|
|
|||
|
postulate undefined : {ℓ : Level} → {A : Set ℓ} → A
|
|||
|
|
|||
|
record Category {ℓ ℓ'} : Set (lsuc (ℓ' ⊔ ℓ)) where
|
|||
|
field
|
|||
|
Object : Set ℓ
|
|||
|
Arrow : Object → Object → Set ℓ'
|
|||
|
𝟙 : {o : Object} → Arrow o o
|
|||
|
_⊕_ : { a b c : Object } → Arrow b c → Arrow a b → Arrow a c
|
|||
|
assoc : { A B C D : Object } { f : Arrow A B } { g : Arrow B C } { h : Arrow C D }
|
|||
|
→ h ⊕ (g ⊕ f) ≡ (h ⊕ g) ⊕ f
|
|||
|
ident : { A B : Object } { f : Arrow A B }
|
|||
|
→ f ⊕ 𝟙 ≡ f × 𝟙 ⊕ f ≡ f
|
|||
|
infixl 45 _⊕_
|
|||
|
dom : { a b : Object } → Arrow a b → Object
|
|||
|
dom {a = a} _ = a
|
|||
|
cod : { a b : Object } → Arrow a b → Object
|
|||
|
cod {b = b} _ = b
|
|||
|
|
|||
|
open Category public
|
|||
|
|
|||
|
record Functor {ℓc ℓc' ℓd ℓd'} (C : Category {ℓc} {ℓc'}) (D : Category {ℓd} {ℓd'})
|
|||
|
: Set (ℓc ⊔ ℓc' ⊔ ℓd ⊔ ℓd') where
|
|||
|
private
|
|||
|
open module C = Category C
|
|||
|
open module D = Category D
|
|||
|
field
|
|||
|
F : C.Object → D.Object
|
|||
|
f : {c c' : C.Object} → C.Arrow c c' → D.Arrow (F c) (F c')
|
|||
|
ident : { c : C.Object } → f (C.𝟙 {c}) ≡ D.𝟙 {F c}
|
|||
|
-- TODO: Avoid use of ugly explicit arguments somehow.
|
|||
|
-- This guy managed to do it:
|
|||
|
-- https://github.com/copumpkin/categories/blob/master/Categories/Functor/Core.agda
|
|||
|
distrib : { c c' c'' : C.Object} {a : C.Arrow c c'} {a' : C.Arrow c' c''}
|
|||
|
→ f (a' C.⊕ a) ≡ f a' D.⊕ f a
|
|||
|
|
|||
|
FunctorComp : ∀ {ℓ ℓ'} {a b c : Category {ℓ} {ℓ'}} → Functor b c → Functor a b → Functor a c
|
|||
|
FunctorComp {a = a} {b = b} {c = c} F G =
|
|||
|
record
|
|||
|
{ F = F.F ∘ G.F
|
|||
|
; f = F.f ∘ G.f
|
|||
|
; ident = λ { {c = obj} →
|
|||
|
let --t : (F.f ∘ G.f) (𝟙 a) ≡ (𝟙 c)
|
|||
|
g-ident = G.ident
|
|||
|
k : F.f (G.f {c' = obj} (𝟙 a)) ≡ F.f (G.f (𝟙 a))
|
|||
|
k = refl {x = F.f (G.f (𝟙 a))}
|
|||
|
t : F.f (G.f (𝟙 a)) ≡ (𝟙 c)
|
|||
|
-- t = subst F.ident (subst G.ident k)
|
|||
|
t = undefined
|
|||
|
in t }
|
|||
|
; distrib = undefined -- subst F.distrib (subst G.distrib refl)
|
|||
|
}
|
|||
|
where
|
|||
|
open module F = Functor F
|
|||
|
open module G = Functor G
|
|||
|
|
|||
|
-- The identity functor
|
|||
|
Identity : {ℓ ℓ' : Level} → {C : Category {ℓ} {ℓ'}} → Functor C C
|
|||
|
Identity = record { F = λ x → x ; f = λ x → x ; ident = refl ; distrib = refl }
|
|||
|
|
|||
|
module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} { A B : Object ℂ } where
|
|||
|
private
|
|||
|
open module ℂ = Category ℂ
|
|||
|
_+_ = ℂ._⊕_
|
|||
|
|
|||
|
Isomorphism : (f : ℂ.Arrow A B) → Set ℓ'
|
|||
|
Isomorphism f = Σ[ g ∈ ℂ.Arrow B A ] g + f ≡ ℂ.𝟙 × f + g ≡ ℂ.𝟙
|
|||
|
|
|||
|
Epimorphism : {X : ℂ.Object } → (f : ℂ.Arrow A B) → Set ℓ'
|
|||
|
Epimorphism {X} f = ( g₀ g₁ : ℂ.Arrow B X ) → g₀ + f ≡ g₁ + f → g₀ ≡ g₁
|
|||
|
|
|||
|
Monomorphism : {X : ℂ.Object} → (f : ℂ.Arrow A B) → Set ℓ'
|
|||
|
Monomorphism {X} f = ( g₀ g₁ : ℂ.Arrow X A ) → f + g₀ ≡ f + g₁ → g₀ ≡ g₁
|
|||
|
|
|||
|
iso-is-epi : ∀ {X} (f : ℂ.Arrow A B) → Isomorphism f → Epimorphism {X = X} f
|
|||
|
-- Idea: Pre-compose with f- on both sides of the equality of eq to get
|
|||
|
-- g₀ + f + f- ≡ g₁ + f + f-
|
|||
|
-- which by left-inv reduces to the goal.
|
|||
|
iso-is-epi f (f- , left-inv , right-inv) g₀ g₁ eq =
|
|||
|
trans (sym (fst ℂ.ident))
|
|||
|
( trans (cong (_+_ g₀) (sym right-inv))
|
|||
|
( trans ℂ.assoc
|
|||
|
( trans (cong (λ x → x + f-) eq)
|
|||
|
( trans (sym ℂ.assoc)
|
|||
|
( trans (cong (_+_ g₁) right-inv) (fst ℂ.ident))
|
|||
|
)
|
|||
|
)
|
|||
|
)
|
|||
|
)
|
|||
|
|
|||
|
iso-is-mono : ∀ {X} (f : ℂ.Arrow A B ) → Isomorphism f → Monomorphism {X = X} f
|
|||
|
-- For the next goal we do something similar: Post-compose with f- and use
|
|||
|
-- right-inv to get the goal.
|
|||
|
iso-is-mono f (f- , (left-inv , right-inv)) g₀ g₁ eq =
|
|||
|
trans (sym (snd ℂ.ident))
|
|||
|
( trans (cong (λ x → x + g₀) (sym left-inv))
|
|||
|
( trans (sym ℂ.assoc)
|
|||
|
( trans (cong (_+_ f-) eq)
|
|||
|
( trans ℂ.assoc
|
|||
|
( trans (cong (λ x → x + g₁) left-inv) (snd ℂ.ident)
|
|||
|
)
|
|||
|
)
|
|||
|
)
|
|||
|
)
|
|||
|
)
|
|||
|
|
|||
|
iso-is-epi-mono : ∀ {X} (f : ℂ.Arrow A B ) → Isomorphism f → Epimorphism {X = X} f × Monomorphism {X = X} f
|
|||
|
iso-is-epi-mono f iso = iso-is-epi f iso , iso-is-mono f iso
|
|||
|
|
|||
|
data ⊥ : Set where
|
|||
|
|
|||
|
¬_ : {ℓ : Level} → Set ℓ → Set ℓ
|
|||
|
¬ A = A → ⊥
|
|||
|
|
|||
|
{-
|
|||
|
epi-mono-is-not-iso : ∀ {ℓ ℓ'} → ¬ ((ℂ : Category {ℓ} {ℓ'}) {A B X : Object ℂ} (f : Arrow ℂ A B ) → Epimorphism {ℂ = ℂ} {X = X} f → Monomorphism {ℂ = ℂ} {X = X} f → Isomorphism {ℂ = ℂ} f)
|
|||
|
epi-mono-is-not-iso f =
|
|||
|
let k = f {!!} {!!} {!!} {!!}
|
|||
|
in {!!}
|
|||
|
-}
|
|||
|
|
|||
|
_≅_ : { ℓ ℓ' : Level } → { ℂ : Category {ℓ} {ℓ'} } → ( A B : Object ℂ ) → Set ℓ'
|
|||
|
_≅_ {ℂ = ℂ} A B = Σ[ f ∈ ℂ.Arrow A B ] (Isomorphism {ℂ = ℂ} f)
|
|||
|
where
|
|||
|
open module ℂ = Category ℂ
|
|||
|
|
|||
|
Product : {ℓ : Level} → ( C D : Category {ℓ} {ℓ} ) → Category {ℓ} {ℓ}
|
|||
|
Product C D =
|
|||
|
record
|
|||
|
{ Object = C.Object × D.Object
|
|||
|
; Arrow = λ { (c , d) (c' , d') →
|
|||
|
let carr = C.Arrow c c'
|
|||
|
darr = D.Arrow d d'
|
|||
|
in carr × darr}
|
|||
|
; 𝟙 = C.𝟙 , D.𝟙
|
|||
|
; _⊕_ = λ { (bc∈C , bc∈D) (ab∈C , ab∈D) → bc∈C C.⊕ ab∈C , bc∈D D.⊕ ab∈D}
|
|||
|
; assoc = eqpair C.assoc D.assoc
|
|||
|
; ident =
|
|||
|
let (Cl , Cr) = C.ident
|
|||
|
(Dl , Dr) = D.ident
|
|||
|
in eqpair Cl Dl , eqpair Cr Dr
|
|||
|
}
|
|||
|
where
|
|||
|
open module C = Category C
|
|||
|
open module D = Category D
|
|||
|
-- Two pairs are equal if their components are equal.
|
|||
|
eqpair : {ℓ : Level} → { A : Set ℓ } → { B : Set ℓ } → { a a' : A } → { b b' : B } → a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b')
|
|||
|
eqpair {a = a} {b = b} eqa eqb = subst eqa (subst eqb (refl {x = (a , b)}))
|
|||
|
|
|||
|
Opposite : ∀ {ℓ ℓ'} → Category {ℓ} {ℓ'} → Category {ℓ} {ℓ'}
|
|||
|
Opposite ℂ =
|
|||
|
record
|
|||
|
{ Object = ℂ.Object
|
|||
|
; Arrow = λ A B → ℂ.Arrow B A
|
|||
|
; 𝟙 = ℂ.𝟙
|
|||
|
; _⊕_ = λ g f → f ℂ.⊕ g
|
|||
|
; assoc = sym ℂ.assoc
|
|||
|
; ident = swap ℂ.ident
|
|||
|
}
|
|||
|
where
|
|||
|
open module ℂ = Category ℂ
|
|||
|
|
|||
|
CatCat : {ℓ ℓ' : Level} → Category {ℓ-suc (ℓ ⊔ ℓ')} {ℓ ⊔ ℓ'}
|
|||
|
CatCat {ℓ} {ℓ'} =
|
|||
|
record
|
|||
|
{ Object = Category {ℓ} {ℓ'}
|
|||
|
; Arrow = Functor
|
|||
|
; 𝟙 = Identity
|
|||
|
; _⊕_ = FunctorComp
|
|||
|
; assoc = undefined
|
|||
|
; ident = λ { {f = f} →
|
|||
|
let eq : f ≡ f
|
|||
|
eq = refl
|
|||
|
in undefined , undefined}
|
|||
|
}
|
|||
|
|
|||
|
Hom : {ℓ ℓ' : Level} → {ℂ : Category {ℓ} {ℓ'}} → (A B : Object ℂ) → Set ℓ'
|
|||
|
Hom {ℂ = ℂ} A B = Arrow ℂ A B
|
|||
|
|
|||
|
module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} where
|
|||
|
private
|
|||
|
Obj = Object ℂ
|
|||
|
Arr = Arrow ℂ
|
|||
|
_+_ = _⊕_ ℂ
|
|||
|
|
|||
|
HomFromArrow : (A : Obj) → {B B' : Obj} → (g : Arr B B')
|
|||
|
→ Hom {ℂ = ℂ} A B → Hom {ℂ = ℂ} A B'
|
|||
|
HomFromArrow _A g = λ f → g + f
|