cat/doc/presentation.tex

491 lines
11 KiB
TeX
Raw Normal View History

2018-06-07 13:20:14 +00:00
\documentclass[a4paper]{beamer}
2018-05-18 11:14:41 +00:00
%% \usecolortheme[named=seagull]{structure}
2018-05-16 09:01:07 +00:00
\input{packages.tex}
2018-05-30 23:07:05 +00:00
2018-05-16 09:01:07 +00:00
\input{macros.tex}
2018-05-30 23:07:05 +00:00
\title{Univalent Categories}
\subtitle{A formalization of category theory in Cubical Agda}
2018-05-18 11:14:41 +00:00
\newcommand{\myname}{Frederik Hangh{\o}j Iversen}
\author[\myname]{
\myname\\
\footnotesize Supervisors: Thierry Coquand, Andrea Vezzosi\\
Examiner: Andreas Abel
}
2018-05-16 09:01:07 +00:00
\institute{Chalmers University of Technology}
2018-05-18 11:14:41 +00:00
2018-05-16 09:01:07 +00:00
\begin{document}
2018-06-07 13:20:14 +00:00
2018-05-16 09:01:07 +00:00
\frame{\titlepage}
\begin{frame}
2018-06-07 13:20:14 +00:00
\frametitle{Introduction}
Category Theory: The study of abstract functions. Slogan: ``It's the
arrows that matter''\pause
Objects are equal ``up to isomorphism''. Univalence makes this notion
precise.\pause
Agda does not permit proofs of univalence. Cubical Agda admits
this.\pause
Goal: Construct a category whose terminal objects are (equivalent to)
products. Use this to conclude that products are propositions, not a
structure on a category.
2018-05-16 09:01:07 +00:00
\end{frame}
2018-06-07 13:20:14 +00:00
2018-05-16 09:01:07 +00:00
\begin{frame}
2018-06-07 13:20:14 +00:00
\frametitle{Outline}
The path type
2018-05-16 09:01:07 +00:00
2018-06-07 13:20:14 +00:00
Definition of a (pre-) category
2018-05-16 09:01:07 +00:00
2018-06-07 13:20:14 +00:00
1-categories
Univalent (proper) categories
The category of spans
2018-05-16 09:01:07 +00:00
\end{frame}
2018-06-07 13:20:14 +00:00
\section{Paths}
2018-05-16 09:01:07 +00:00
\begin{frame}
\frametitle{Paths}
\framesubtitle{Definition}
2018-05-18 11:14:41 +00:00
Heterogeneous paths
\begin{equation*}
2018-05-30 23:07:05 +00:00
\Path \tp (P \tp \I\MCU) → P\ 0 → P\ 1 → \MCU
2018-05-18 11:14:41 +00:00
\end{equation*}
\pause
2018-06-07 13:20:14 +00:00
For $P \tp \I\MCU$ and $a_0 \tp P\ 0$, $a_1 \tp P\ 1$
2018-05-16 09:01:07 +00:00
inhabitants of $\Path\ P\ a_0\ a_1$ are like functions
2018-05-18 11:14:41 +00:00
%
$$
2018-05-30 23:07:05 +00:00
p \tp_{i \tp \I} P\ i
2018-05-18 11:14:41 +00:00
$$
%
Which satisfy $p\ 0 & = a_0$ and $p\ 1 & = a_1$
\pause
2018-05-16 09:01:07 +00:00
2018-05-18 11:14:41 +00:00
Homogenous paths
$$
2018-05-28 15:32:56 +00:00
a_0 ≡ a_1 ≜ \Path\ (\var{const}\ A)\ a_0\ a_1
2018-05-18 11:14:41 +00:00
$$
\end{frame}
2018-06-07 13:20:14 +00:00
2018-05-18 11:14:41 +00:00
\begin{frame}
\frametitle{Pre categories}
\framesubtitle{Definition}
Data:
\begin{align*}
\Object & \tp \Type \\
2018-05-28 15:32:56 +00:00
\Arrow & \tp \Object\Object\Type \\
2018-05-18 11:14:41 +00:00
\identity & \tp \Arrow\ A\ A \\
2018-05-28 15:32:56 +00:00
\lll & \tp \Arrow\ B\ C → \Arrow\ A\ B → \Arrow\ A\ C
2018-05-18 11:14:41 +00:00
\end{align*}
%
\pause
Laws:
%
$$
h \lll (g \lll f) ≡ (h \lll g) \lll f
$$
$$
(\identity \lll f ≡ f)
2018-05-28 15:32:56 +00:00
×
2018-05-18 11:14:41 +00:00
(f \lll \identity ≡ f)
$$
\end{frame}
\begin{frame}
\frametitle{Pre categories}
2018-06-07 13:20:14 +00:00
\framesubtitle{1-categories}
Cubical Agda does not admit \emph{Uniqueness of Identity Proofs}
(UIP). Rather there is a hierarchy of \emph{Homotopy Types}:
Contractible types, mere propositions, sets, groupoids, \dots
\pause
1-categories:
2018-05-18 11:14:41 +00:00
$$
2018-06-07 13:20:14 +00:00
\isSet\ (\Arrow\ A\ B)
2018-05-18 11:14:41 +00:00
$$
2018-06-07 13:20:14 +00:00
\pause
2018-05-18 11:14:41 +00:00
\begin{align*}
2018-06-07 13:20:14 +00:00
\isSet & \tp \MCU\MCU \\
\isSet\ A & ≜ ∏_{a_0, a_1 \tp A} \isProp\ (a_0 ≡ a_1)
2018-05-18 11:14:41 +00:00
\end{align*}
\end{frame}
2018-06-07 13:20:14 +00:00
\begin{frame}
\frametitle{Outline}
The path type \ensuremath{\checkmark}
Definition of a (pre-) category \ensuremath{\checkmark}
1-categories \ensuremath{\checkmark}
Univalent (proper) categories
The category of spans
\end{frame}
2018-05-18 11:14:41 +00:00
\begin{frame}
\frametitle{Categories}
\framesubtitle{Univalence}
2018-05-30 23:07:05 +00:00
Let $\approxeq$ denote isomorphism of objects. We can then construct
2018-05-18 11:14:41 +00:00
the identity isomorphism in any category:
$$
2018-06-07 13:20:14 +00:00
(\identity , \identity , \var{isIdentity}) \tp A \approxeq A
2018-05-18 11:14:41 +00:00
$$
\pause
Likewise since paths are substitutive we can promote a path to an isomorphism:
$$
\idToIso \tp A ≡ B → A ≊ B
$$
\pause
For a category to be univalent we require this to be an equivalence:
%
$$
2018-05-28 15:32:56 +00:00
\isEquiv\ (A ≡ B)\ (A \approxeq B)\ \idToIso
2018-05-18 11:14:41 +00:00
$$
%
\end{frame}
\begin{frame}
\frametitle{Categories}
\framesubtitle{Univalence, cont'd}
2018-05-28 15:32:56 +00:00
$$\isEquiv\ (A ≡ B)\ (A \approxeq B)\ \idToIso$$
2018-05-18 11:14:41 +00:00
\pause%
2018-05-28 15:32:56 +00:00
$$(A ≡ B)(A \approxeq B)$$
2018-05-18 11:14:41 +00:00
\pause%
2018-05-28 15:32:56 +00:00
$$(A ≡ B)(A \approxeq B)$$
2018-05-18 11:14:41 +00:00
\pause%
2018-06-07 13:20:14 +00:00
Name the inverse of $\idToIso$:
2018-05-28 15:32:56 +00:00
$$\isoToId \tp (A \approxeq B)(A ≡ B)$$
2018-05-18 11:14:41 +00:00
\end{frame}
\begin{frame}
2018-06-07 13:20:14 +00:00
\frametitle{Propositionality of products}
Construct a category for which it is the case that the terminal
objects are equivalent to products:
2018-05-18 11:14:41 +00:00
\begin{align*}
2018-06-07 13:20:14 +00:00
\var{Terminal}\var{Product}\ \ 𝒜\
2018-05-18 11:14:41 +00:00
\end{align*}
2018-06-07 13:20:14 +00:00
2018-05-18 11:14:41 +00:00
\pause
2018-06-07 13:20:14 +00:00
And since equivalences preserve homotopy levels we get:
2018-05-18 11:14:41 +00:00
%
$$
2018-06-07 13:20:14 +00:00
\isProp\ \left(\var{Product}\ \bC\ 𝒜\ \right)
2018-05-18 11:14:41 +00:00
$$
\end{frame}
\begin{frame}
\frametitle{Categories}
\framesubtitle{A theorem}
%
2018-06-07 13:20:14 +00:00
Let the isomorphism $(ι, \inv{ι}, \var{inv}) \tp A \approxeq B$.
2018-05-18 11:14:41 +00:00
%
\pause
%
The isomorphism induces the path
%
$$
2018-06-07 13:20:14 +00:00
p ≜ \isoToId\ (\iota, \inv{\iota}, \var{inv}) \tp A ≡ B
2018-05-18 11:14:41 +00:00
$$
%
\pause
2018-06-07 13:20:14 +00:00
and consequently a path on arrows:
2018-05-18 11:14:41 +00:00
%
$$
2018-05-28 15:32:56 +00:00
p_{\var{dom}}\congruence\ (λ x → \Arrow\ x\ X)\ p
2018-05-18 11:14:41 +00:00
\tp
2018-05-28 15:32:56 +00:00
\Arrow\ A\ X ≡ \Arrow\ B\ X
2018-05-18 11:14:41 +00:00
$$
%
\pause
The proposition is:
%
\begin{align}
\label{eq:coeDom}
\tag{$\var{coeDom}$}
2018-05-28 15:32:56 +00:00
_{f \tp A → X}
\var{coe}\ p_{\var{dom}}\ f ≡ f \lll \inv{\iota}
2018-05-18 11:14:41 +00:00
\end{align}
\end{frame}
\begin{frame}
\frametitle{Categories}
\framesubtitle{A theorem, proof}
\begin{align*}
\var{coe}\ p_{\var{dom}}\ f
2018-06-07 13:20:14 +00:00
& ≡ f \lll (\idToIso\ p)_1 && \text{By path-induction} \\
2018-05-28 15:32:56 +00:00
& ≡ f \lll \inv{\iota}
2018-05-18 11:14:41 +00:00
&& \text{$\idToIso$ and $\isoToId$ are inverses}\\
\end{align*}
\pause
%
2018-05-30 23:07:05 +00:00
Induction will be based at $A$. Let $\widetilde{B}$ and $\widetilde{p}
2018-05-28 15:32:56 +00:00
\tp A ≡ \widetilde{B}$ be given.
2018-05-18 11:14:41 +00:00
%
\pause
%
Define the family:
%
$$
2018-05-28 15:32:56 +00:00
D\ \widetilde{B}\ \widetilde{p}
2018-05-18 11:14:41 +00:00
\var{coe}\ \widetilde{p}_{\var{dom}}\ f
2018-05-28 15:32:56 +00:00
2018-05-18 11:14:41 +00:00
f \lll \inv{(\idToIso\ \widetilde{p})}
$$
\pause
%
The base-case becomes:
$$
d \tp D\ A\ \refl =
2018-06-07 13:20:14 +00:00
\left(\var{coe}\ \refl_{\var{dom}}\ f ≡ f \lll \inv{(\idToIso\ \refl)}\right)
2018-05-18 11:14:41 +00:00
$$
\end{frame}
\begin{frame}
\frametitle{Categories}
\framesubtitle{A theorem, proof, cont'd}
$$
d \tp
2018-05-28 15:32:56 +00:00
\var{coe}\ \refl_{\var{dom}}\ f ≡ f \lll \inv{(\idToIso\ \refl)}
2018-05-18 11:14:41 +00:00
$$
\pause
\begin{align*}
2018-06-07 13:20:14 +00:00
\var{coe}\ \refl_{\var{dom}}\ f
& =
\var{coe}\ \refl\ f \\
2018-05-28 15:32:56 +00:00
& ≡ f
2018-06-07 13:20:14 +00:00
&& \text{neutral element for $\var{coe}$}\\
2018-05-28 15:32:56 +00:00
& ≡ f \lll \identity \\
& ≡ f \lll \var{subst}\ \refl\ \identity
2018-06-07 13:20:14 +00:00
&& \text{neutral element for $\var{subst}$}\\
2018-05-28 15:32:56 +00:00
& ≡ f \lll \inv{(\idToIso\ \refl)}
2018-05-18 11:14:41 +00:00
&& \text{By definition of $\idToIso$}\\
\end{align*}
\pause
In conclusion, the theorem is inhabited by:
$$
2018-06-07 13:20:14 +00:00
\var{pathInd}\ D\ d\ B\ p
2018-05-18 11:14:41 +00:00
$$
\end{frame}
\begin{frame}
\frametitle{Span category} \framesubtitle{Definition} Given a base
category $\bC$ and two objects in this category $\pairA$ and $\pairB$
we can construct the \nomenindex{span category}:
%
\pause
Objects:
$$
2018-06-07 13:20:14 +00:00
_{X \tp Object} (\Arrow\ X\ \pairA) × (\Arrow\ X\ \pairB)
2018-05-18 11:14:41 +00:00
$$
\pause
%
2018-06-07 13:20:14 +00:00
Arrows between objects $(A , a_{\pairA} , a_{\pairB})$ and
$(B , b_{\pairA} , b_{\pairB})$:
2018-05-18 11:14:41 +00:00
%
$$
2018-05-28 15:32:56 +00:00
_{f \tp \Arrow\ A\ B}
2018-06-07 13:20:14 +00:00
(b_{\pairA} \lll f ≡ a_{\pairA}) ×
(b_{\pairB} \lll f ≡ a_{\pairB})
2018-05-18 11:14:41 +00:00
$$
\end{frame}
\begin{frame}
\frametitle{Span category}
\framesubtitle{Univalence}
\begin{align*}
2018-05-28 15:32:56 +00:00
(X , x_{𝒜} , x_{}) ≡ (Y , y_{𝒜} , y_{})
2018-05-18 11:14:41 +00:00
\end{align*}
\begin{align*}
\begin{split}
2018-05-28 15:32:56 +00:00
p \tp & X ≡ Y \\
& \Path\ (λ i → \Arrow\ (p\ i)\ 𝒜)\ x_{𝒜}\ y_{𝒜} \\
& \Path\ (λ i → \Arrow\ (p\ i)\ )\ x_{}\ y_{}
2018-05-18 11:14:41 +00:00
\end{split}
\end{align*}
\begin{align*}
\begin{split}
\var{iso} \tp & X \approxeq Y \\
2018-05-28 15:32:56 +00:00
& \Path\ (λ i → \Arrow\ (\widetilde{p}\ i)\ 𝒜)\ x_{𝒜}\ y_{𝒜} \\
& \Path\ (λ i → \Arrow\ (\widetilde{p}\ i)\ )\ x_{}\ y_{}
2018-05-18 11:14:41 +00:00
\end{split}
\end{align*}
\begin{align*}
2018-05-28 15:32:56 +00:00
(X , x_{𝒜} , x_{}) ≊ (Y , y_{𝒜} , y_{})
2018-05-18 11:14:41 +00:00
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Span category}
\framesubtitle{Univalence, proof}
%
\begin{align*}
%% (f, \inv{f}, \var{inv}_f, \var{inv}_{\inv{f}})
%% \tp
2018-05-28 15:32:56 +00:00
(X, x_{𝒜}, x_{}) \approxeq (Y, y_{𝒜}, y_{})
2018-05-18 11:14:41 +00:00
\to
\begin{split}
\var{iso} \tp & X \approxeq Y \\
2018-05-28 15:32:56 +00:00
& \Path\ (λ i → \Arrow\ (\widetilde{p}\ i)\ 𝒜)\ x_{𝒜}\ y_{𝒜} \\
& \Path\ (λ i → \Arrow\ (\widetilde{p}\ i)\ )\ x_{}\ y_{}
2018-05-18 11:14:41 +00:00
\end{split}
\end{align*}
\pause
%
Let $(f, \inv{f}, \var{inv}_f, \var{inv}_{\inv{f}})$ be an inhabitant
of the antecedent.\pause
Projecting out the first component gives us the isomorphism
%
$$
(\fst\ f, \fst\ \inv{f}
, \congruence\ \fst\ \var{inv}_f
, \congruence\ \fst\ \var{inv}_{\inv{f}}
)
\tp X \approxeq Y
$$
\pause
%
This gives rise to the following paths:
%
\begin{align*}
\begin{split}
2018-05-28 15:32:56 +00:00
\widetilde{p} & \tp X ≡ Y \\
\widetilde{p}_{𝒜} & \tp \Arrow\ X\ 𝒜\Arrow\ Y\ 𝒜 \\
2018-05-18 11:14:41 +00:00
\end{split}
\end{align*}
%
\end{frame}
\begin{frame}
\frametitle{Span category}
\framesubtitle{Univalence, proof, cont'd}
It remains to construct:
%
\begin{align*}
\begin{split}
2018-05-28 15:32:56 +00:00
& \Path\ (λ i → \widetilde{p}_{𝒜}\ i)\ x_{𝒜}\ y_{𝒜}
2018-05-18 11:14:41 +00:00
\end{split}
\end{align*}
\pause
%
This is achieved with the following lemma:
%
\begin{align*}
2018-05-28 15:32:56 +00:00
_{q \tp A ≡ B} \var{coe}\ q\ x_{𝒜} ≡ y_{𝒜}
2018-05-18 11:14:41 +00:00
2018-05-28 15:32:56 +00:00
\Path\ (λ i → q\ i)\ x_{𝒜}\ y_{𝒜}
2018-05-18 11:14:41 +00:00
\end{align*}
%
Which is used without proof.\pause
So the construction reduces to:
%
\begin{align*}
2018-05-28 15:32:56 +00:00
\var{coe}\ \widetilde{p}_{𝒜}\ x_{𝒜} ≡ y_{𝒜}
2018-05-18 11:14:41 +00:00
\end{align*}%
\pause%
This is proven with:
%
\begin{align*}
2018-05-28 15:32:56 +00:00
\var{coe}\ \widetilde{p}_{𝒜}\ x_{𝒜}
& ≡ x_{𝒜} \lll \fst\ \inv{f} && \text{\ref{eq:coeDom}} \\
& ≡ y_{𝒜} && \text{Property of span category}
2018-05-18 11:14:41 +00:00
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Propositionality of products}
We have
%
$$
\isProp\ \var{Terminal}
$$\pause
%
We can show:
\begin{align*}
2018-05-28 15:32:56 +00:00
\var{Terminal}\var{Product}\ \ 𝒜\
2018-05-18 11:14:41 +00:00
\end{align*}
\pause
And since equivalences preserve homotopy levels we get:
%
$$
2018-05-28 15:32:56 +00:00
\isProp\ \left(\var{Product}\ \bC\ 𝒜\ \right)
2018-05-18 11:14:41 +00:00
$$
\end{frame}
\begin{frame}
\frametitle{Monads}
\framesubtitle{Monoidal form}
%
\begin{align*}
2018-06-07 13:20:14 +00:00
\EndoR & \tp \Functor\ \ \\
2018-05-18 11:14:41 +00:00
\pureNT
2018-06-07 13:20:14 +00:00
& \tp \NT{\widehat{\identity}}{\EndoR} \\
2018-05-18 11:14:41 +00:00
\joinNT
2018-06-07 13:20:14 +00:00
& \tp \NT{(\EndoR \oplus \EndoR)}{\EndoR}
2018-05-18 11:14:41 +00:00
\end{align*}
\pause
%
2018-06-07 13:20:14 +00:00
Let $\fmap$ be the map on arrows of $\EndoR$.
2018-05-18 11:14:41 +00:00
%
\begin{align*}
\join \lll \fmap\ \join
&\join \lll \join \\
\join \lll \pure\ &\identity \\
\join \lll \fmap\ \pure &\identity
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Monads}
\framesubtitle{Kleisli form}
%
\begin{align*}
\omapR & \tp \Object\Object \\
2018-05-28 15:32:56 +00:00
\pure & \tp % ∏_{X \tp Object}
2018-05-18 11:14:41 +00:00
\Arrow\ X\ (\omapR\ X) \\
\bind & \tp
\Arrow\ X\ (\omapR\ Y)
\to
\Arrow\ (\omapR\ X)\ (\omapR\ Y)
\end{align*}\pause
%
\begin{align*}
\fish & \tp
\Arrow\ A\ (\omapR\ B)
\Arrow\ B\ (\omapR\ C)
\Arrow\ A\ (\omapR\ C) \\
2018-05-28 15:32:56 +00:00
f \fish g & ≜ f \rrr (\bind\ g)
2018-05-18 11:14:41 +00:00
\end{align*}
\pause
%
\begin{align*}
\bind\ \pure &\identity_{\omapR\ X} \\
\pure \fish f & ≡ f \\
(\bind\ f) \rrr (\bind\ g) &\bind\ (f \fish g)
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Monads}
\framesubtitle{Equivalence}
In the monoidal formulation we can define $\bind$:
%
$$
2018-05-28 15:32:56 +00:00
\bind\ f ≜ \join \lll \fmap\ f
2018-05-18 11:14:41 +00:00
$$
\pause
%
And likewise in the Kleisli formulation we can define $\join$:
%
$$
2018-05-28 15:32:56 +00:00
\join\bind\ \identity
2018-05-18 11:14:41 +00:00
$$
\pause
2018-06-07 13:20:14 +00:00
The laws are logically equivalent. Since logical equivalence is
enough for as an equivalence of types for propositions we get:
2018-05-18 11:14:41 +00:00
%
$$
2018-05-28 15:32:56 +00:00
\var{Monoidal}\var{Kleisli}
2018-05-18 11:14:41 +00:00
$$
%
2018-05-16 09:01:07 +00:00
\end{frame}
\end{document}