cat/src/Cat/Category/Yoneda.agda

65 lines
2.1 KiB
Agda
Raw Normal View History

2018-01-24 15:38:28 +00:00
{-# OPTIONS --allow-unsolved-metas --cubical #-}
2018-02-25 14:28:42 +00:00
module Cat.Category.Yoneda where
open import Agda.Primitive
open import Data.Product
2018-01-30 10:19:48 +00:00
open import Cubical
open import Cat.Category
2018-02-05 13:59:53 +00:00
open import Cat.Category.Functor
open import Cat.Equality
open Equality.Data.Product
2018-02-23 09:53:11 +00:00
-- TODO: We want to avoid defining the yoneda embedding going through the
-- category of categories (since it doesn't exist).
open import Cat.Categories.Cat using (RawCat)
module _ { : Level} { : Category } (unprovable : IsCategory (RawCat )) where
open import Cat.Categories.Fun
open import Cat.Categories.Sets
module Cat = Cat.Categories.Cat
open import Cat.Category.Exponential
open Functor
𝓢 = Sets
2018-02-25 14:23:33 +00:00
open Fun (opposite ) 𝓢
2018-02-23 09:53:11 +00:00
private
Cat : Category _ _
Cat = record { raw = RawCat ; isCategory = unprovable}
prshf = presheaf { = }
module = Category
_⇑_ : (A B : Category.Object Cat) Category.Object Cat
A B = (exponent A B) .obj
where
open HasExponentials (Cat.hasExponentials unprovable)
module _ {A B : .Object} (f : [ A , B ]) where
:func→: : NaturalTransformation (prshf A) (prshf B)
2018-02-23 11:43:49 +00:00
:func→: = (λ C x [ f x ]) , λ f₁ funExt λ _ .isAssociative
2018-02-23 09:53:11 +00:00
module _ {c : Category.Object } where
eqTrans : (λ _ Transformation (prshf c) (prshf c))
[ (λ _ x [ .𝟙 x ]) identityTrans (prshf c) ]
2018-02-23 11:49:41 +00:00
eqTrans = funExt λ x funExt λ x .isIdentity .proj₂
2018-02-23 09:53:11 +00:00
2018-02-23 10:23:21 +00:00
open import Cubical.NType.Properties
open import Cat.Categories.Fun
:ident: : :func→: (.𝟙 {c}) Category.𝟙 Fun {A = prshf c}
:ident: = lemSig (naturalIsProp {F = prshf c} {prshf c}) _ _ eq
where
eq : (λ C x [ .𝟙 x ]) identityTrans (prshf c)
2018-02-23 11:49:41 +00:00
eq = funExt λ A funExt λ B proj₂ .isIdentity
2018-02-23 09:53:11 +00:00
yoneda : Functor Fun
2018-02-23 09:53:11 +00:00
yoneda = record
{ raw = record
{ func* = prshf
; func→ = :func→:
}
; isFunctor = record
2018-02-23 11:49:41 +00:00
{ isIdentity = :ident:
2018-02-23 11:53:35 +00:00
; isDistributive = {!!}
2018-02-23 09:53:11 +00:00
}
}