Do not use wishlist
This commit is contained in:
parent
d5a4550ca9
commit
0db4e97511
|
@ -7,7 +7,6 @@ open import Cat.Prelude as P
|
||||||
open import Cat.Category
|
open import Cat.Category
|
||||||
open import Cat.Category.Functor
|
open import Cat.Category.Functor
|
||||||
open import Cat.Category.Product
|
open import Cat.Category.Product
|
||||||
open import Cat.Wishlist
|
|
||||||
open import Cat.Equivalence
|
open import Cat.Equivalence
|
||||||
|
|
||||||
_⊙_ : {ℓa ℓb ℓc : Level} {A : Set ℓa} {B : Set ℓb} {C : Set ℓc} → (A ≃ B) → (B ≃ C) → A ≃ C
|
_⊙_ : {ℓa ℓb ℓc : Level} {A : Set ℓa} {B : Set ℓb} {C : Set ℓc} → (A ≃ B) → (B ≃ C) → A ≃ C
|
||||||
|
|
|
@ -25,7 +25,6 @@ module Nat = Data.Nat
|
||||||
|
|
||||||
open import Cat.Category
|
open import Cat.Category
|
||||||
open import Cat.Category.Functor
|
open import Cat.Category.Functor
|
||||||
open import Cat.Wishlist
|
|
||||||
|
|
||||||
module Cat.Category.NaturalTransformation
|
module Cat.Category.NaturalTransformation
|
||||||
{ℓc ℓc' ℓd ℓd' : Level}
|
{ℓc ℓc' ℓd ℓd' : Level}
|
||||||
|
|
|
@ -98,4 +98,10 @@ module _ {ℓ : Level} {A : Set ℓ} {a : A} where
|
||||||
_ ≡⟨ pathJprop {x = a} (λ y x → A) _ ⟩
|
_ ≡⟨ pathJprop {x = a} (λ y x → A) _ ⟩
|
||||||
a ∎
|
a ∎
|
||||||
|
|
||||||
open import Cat.Wishlist public
|
module _ {ℓ : Level} {A : Set ℓ} where
|
||||||
|
open import Cubical.NType
|
||||||
|
open import Data.Nat using (_≤′_ ; ≤′-refl ; ≤′-step ; zero ; suc)
|
||||||
|
open import Cubical.NType.Properties
|
||||||
|
ntypeCumulative : ∀ {n m} → n ≤′ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A
|
||||||
|
ntypeCumulative {m} ≤′-refl lvl = lvl
|
||||||
|
ntypeCumulative {n} {suc m} (≤′-step le) lvl = HasLevel+1 ⟨ m ⟩₋₂ (ntypeCumulative le lvl)
|
||||||
|
|
|
@ -1,16 +0,0 @@
|
||||||
{-# OPTIONS --allow-unsolved-metas #-}
|
|
||||||
module Cat.Wishlist where
|
|
||||||
|
|
||||||
open import Level hiding (suc; zero)
|
|
||||||
open import Cubical
|
|
||||||
open import Cubical.NType
|
|
||||||
open import Data.Nat using (_≤′_ ; ≤′-refl ; ≤′-step ; zero ; suc)
|
|
||||||
open import Agda.Builtin.Sigma
|
|
||||||
|
|
||||||
open import Cubical.NType.Properties
|
|
||||||
|
|
||||||
|
|
||||||
module _ {ℓ : Level} {A : Set ℓ} where
|
|
||||||
ntypeCumulative : ∀ {n m} → n ≤′ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A
|
|
||||||
ntypeCumulative {m} ≤′-refl lvl = lvl
|
|
||||||
ntypeCumulative {n} {suc m} (≤′-step le) lvl = HasLevel+1 ⟨ m ⟩₋₂ (ntypeCumulative le lvl)
|
|
Loading…
Reference in a new issue