Rename some variables
This commit is contained in:
parent
43cc73c6a8
commit
11f5b89b10
|
@ -22,7 +22,7 @@ Subset A = A → Set
|
||||||
-- syntax subset P = ⦃ a ∈ A | P a ⦄
|
-- syntax subset P = ⦃ a ∈ A | P a ⦄
|
||||||
-- syntax subset-syntax A (λ a → B) = ⟨ a foo A ∣ B ⟩
|
-- syntax subset-syntax A (λ a → B) = ⟨ a foo A ∣ B ⟩
|
||||||
|
|
||||||
-- Membership is function applicatiom.
|
-- Membership is (dependent) function applicatiom.
|
||||||
_∈_ : {ℓ : Level} {A : Set ℓ} → A → Subset A → Set
|
_∈_ : {ℓ : Level} {A : Set ℓ} → A → Subset A → Set
|
||||||
s ∈ S = S s
|
s ∈ S = S s
|
||||||
|
|
||||||
|
@ -30,7 +30,7 @@ infixl 45 _∈_
|
||||||
|
|
||||||
-- The diagnoal of a set is a synonym for equality.
|
-- The diagnoal of a set is a synonym for equality.
|
||||||
Diag : ∀ S → Subset (S × S)
|
Diag : ∀ S → Subset (S × S)
|
||||||
Diag S (s₀ , s₁) = s₀ ≡ s₁
|
Diag S (x , y) = x ≡ y
|
||||||
-- Diag S = subset (S × S) (λ {(p , q) → p ≡ q})
|
-- Diag S = subset (S × S) (λ {(p , q) → p ≡ q})
|
||||||
-- Diag S = ⟨ ? foo ? ∣ ? ⟩
|
-- Diag S = ⟨ ? foo ? ∣ ? ⟩
|
||||||
-- Diag S (s₀ , s₁) = ⦃ (s₀ , s₁) ∈ S | s₀ ≡ s₁ ⦄
|
-- Diag S (s₀ , s₁) = ⦃ (s₀ , s₁) ∈ S | s₀ ≡ s₁ ⦄
|
||||||
|
@ -147,9 +147,9 @@ module _ {A B C D : Set} {S : Subset (A × B)} {R : Subset (B × C)} {Q : Subset
|
||||||
equi = fwd , isequiv
|
equi = fwd , isequiv
|
||||||
|
|
||||||
-- assocc : Q + (R + S) ≡ (Q + R) + S
|
-- assocc : Q + (R + S) ≡ (Q + R) + S
|
||||||
assocc : (Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q)
|
is-assoc : (Σ[ c ∈ C ] (Σ[ b ∈ B ] (a , b) ∈ S × (b , c) ∈ R) × (c , d) ∈ Q)
|
||||||
≡ (Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q))
|
≡ (Σ[ b ∈ B ] (a , b) ∈ S × (Σ[ c ∈ C ] (b , c) ∈ R × (c , d) ∈ Q))
|
||||||
assocc = equivToPath equi
|
is-assoc = equivToPath equi
|
||||||
|
|
||||||
Rel : Category
|
Rel : Category
|
||||||
Rel = record
|
Rel = record
|
||||||
|
@ -157,6 +157,6 @@ Rel = record
|
||||||
; Arrow = λ S R → Subset (S × R)
|
; Arrow = λ S R → Subset (S × R)
|
||||||
; 𝟙 = λ {S} → Diag S
|
; 𝟙 = λ {S} → Diag S
|
||||||
; _⊕_ = λ {A B C} S R → λ {( a , c ) → Σ[ b ∈ B ] ( (a , b) ∈ R × (b , c) ∈ S )}
|
; _⊕_ = λ {A B C} S R → λ {( a , c ) → Σ[ b ∈ B ] ( (a , b) ∈ R × (b , c) ∈ S )}
|
||||||
; assoc = funExt assocc
|
; assoc = funExt is-assoc
|
||||||
; ident = funExt ident-l , funExt ident-r
|
; ident = funExt ident-l , funExt ident-r
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue