Move product, exponential and cart closed to own file
This commit is contained in:
parent
8022ed349d
commit
20dc9d26ac
|
@ -3,10 +3,15 @@ module Cat where
|
|||
import Cat.Category
|
||||
import Cat.Functor
|
||||
import Cat.CwF
|
||||
import Cat.CartesianClosed
|
||||
import Cat.Exponential
|
||||
import Cat.Product
|
||||
|
||||
import Cat.Category.Pathy
|
||||
import Cat.Category.Bij
|
||||
import Cat.Category.Free
|
||||
import Cat.Category.Properties
|
||||
|
||||
import Cat.Categories.Sets
|
||||
-- import Cat.Categories.Cat
|
||||
import Cat.Categories.Rel
|
||||
|
|
12
src/Cat/CartesianClosed.agda
Normal file
12
src/Cat/CartesianClosed.agda
Normal file
|
@ -0,0 +1,12 @@
|
|||
module Cat.CartesianClosed where
|
||||
|
||||
open import Agda.Primitive
|
||||
|
||||
open import Cat.Category
|
||||
open import Cat.Product
|
||||
open import Cat.Exponential
|
||||
|
||||
record CartesianClosed {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') : Set (ℓ ⊔ ℓ') where
|
||||
field
|
||||
{{hasProducts}} : HasProducts ℂ
|
||||
{{hasExponentials}} : HasExponentials ℂ
|
|
@ -8,6 +8,7 @@ import Function
|
|||
|
||||
open import Cat.Category
|
||||
open import Cat.Functor
|
||||
open import Cat.Product
|
||||
open Category
|
||||
|
||||
module _ {ℓ : Level} where
|
||||
|
|
|
@ -136,49 +136,6 @@ module Category {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
|
||||
open Category using ( Object ; _[_,_] ; _[_∘_])
|
||||
|
||||
-- open RawCategory
|
||||
|
||||
module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') {A B obj : Object ℂ} where
|
||||
IsProduct : (π₁ : ℂ [ obj , A ]) (π₂ : ℂ [ obj , B ]) → Set (ℓ ⊔ ℓ')
|
||||
IsProduct π₁ π₂
|
||||
= ∀ {X : Object ℂ} (x₁ : ℂ [ X , A ]) (x₂ : ℂ [ X , B ])
|
||||
→ ∃![ x ] (ℂ [ π₁ ∘ x ] ≡ x₁ × ℂ [ π₂ ∘ x ] ≡ x₂)
|
||||
|
||||
-- Tip from Andrea; Consider this style for efficiency:
|
||||
-- record IsProduct {ℓ ℓ' : Level} (ℂ : Category {ℓ} {ℓ'})
|
||||
-- {A B obj : Object ℂ} (π₁ : Arrow ℂ obj A) (π₂ : Arrow ℂ obj B) : Set (ℓ ⊔ ℓ') where
|
||||
-- field
|
||||
-- isProduct : ∀ {X : ℂ .Object} (x₁ : ℂ .Arrow X A) (x₂ : ℂ .Arrow X B)
|
||||
-- → ∃![ x ] (ℂ ._⊕_ π₁ x ≡ x₁ × ℂ. _⊕_ π₂ x ≡ x₂)
|
||||
|
||||
record Product {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} (A B : Object ℂ) : Set (ℓ ⊔ ℓ') where
|
||||
no-eta-equality
|
||||
field
|
||||
obj : Object ℂ
|
||||
proj₁ : ℂ [ obj , A ]
|
||||
proj₂ : ℂ [ obj , B ]
|
||||
{{isProduct}} : IsProduct ℂ proj₁ proj₂
|
||||
|
||||
arrowProduct : ∀ {X} → (π₁ : ℂ [ X , A ]) (π₂ : ℂ [ X , B ])
|
||||
→ ℂ [ X , obj ]
|
||||
arrowProduct π₁ π₂ = fst (isProduct π₁ π₂)
|
||||
|
||||
record HasProducts {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') : Set (ℓ ⊔ ℓ') where
|
||||
field
|
||||
product : ∀ (A B : Object ℂ) → Product {ℂ = ℂ} A B
|
||||
|
||||
open Product
|
||||
|
||||
objectProduct : (A B : Object ℂ) → Object ℂ
|
||||
objectProduct A B = Product.obj (product A B)
|
||||
-- The product mentioned in awodey in Def 6.1 is not the regular product of arrows.
|
||||
-- It's a "parallel" product
|
||||
parallelProduct : {A A' B B' : Object ℂ} → ℂ [ A , A' ] → ℂ [ B , B' ]
|
||||
→ ℂ [ objectProduct A B , objectProduct A' B' ]
|
||||
parallelProduct {A = A} {A' = A'} {B = B} {B' = B'} a b = arrowProduct (product A' B')
|
||||
(ℂ [ a ∘ (product A B) .proj₁ ])
|
||||
(ℂ [ b ∘ (product A B) .proj₂ ])
|
||||
|
||||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||
private
|
||||
open Category ℂ
|
||||
|
@ -212,40 +169,6 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
-- assoc (Opposite-is-involution i) = {!!}
|
||||
-- ident (Opposite-is-involution i) = {!!}
|
||||
|
||||
module _ {ℓ ℓ'} (ℂ : Category ℓ ℓ') {{hasProducts : HasProducts ℂ}} where
|
||||
open HasProducts hasProducts
|
||||
open Product hiding (obj)
|
||||
private
|
||||
_×p_ : (A B : Object ℂ) → Object ℂ
|
||||
_×p_ A B = Product.obj (product A B)
|
||||
|
||||
module _ (B C : Object ℂ) where
|
||||
IsExponential : (Cᴮ : Object ℂ) → ℂ [ Cᴮ ×p B , C ] → Set (ℓ ⊔ ℓ')
|
||||
IsExponential Cᴮ eval = ∀ (A : Object ℂ) (f : ℂ [ A ×p B , C ])
|
||||
→ ∃![ f~ ] (ℂ [ eval ∘ parallelProduct f~ (Category.𝟙 ℂ)] ≡ f)
|
||||
|
||||
record Exponential : Set (ℓ ⊔ ℓ') where
|
||||
field
|
||||
-- obj ≡ Cᴮ
|
||||
obj : Object ℂ
|
||||
eval : ℂ [ obj ×p B , C ]
|
||||
{{isExponential}} : IsExponential obj eval
|
||||
-- If I make this an instance-argument then the instance resolution
|
||||
-- algorithm goes into an infinite loop. Why?
|
||||
exponentialsHaveProducts : HasProducts ℂ
|
||||
exponentialsHaveProducts = hasProducts
|
||||
transpose : (A : Object ℂ) → ℂ [ A ×p B , C ] → ℂ [ A , obj ]
|
||||
transpose A f = fst (isExponential A f)
|
||||
|
||||
record HasExponentials {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') {{_ : HasProducts ℂ}} : Set (ℓ ⊔ ℓ') where
|
||||
field
|
||||
exponent : (A B : Object ℂ) → Exponential ℂ A B
|
||||
|
||||
record CartesianClosed {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') : Set (ℓ ⊔ ℓ') where
|
||||
field
|
||||
{{hasProducts}} : HasProducts ℂ
|
||||
{{hasExponentials}} : HasExponentials ℂ
|
||||
|
||||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||
unique = isContr
|
||||
|
||||
|
|
39
src/Cat/Exponential.agda
Normal file
39
src/Cat/Exponential.agda
Normal file
|
@ -0,0 +1,39 @@
|
|||
module Cat.Exponential where
|
||||
|
||||
open import Agda.Primitive
|
||||
open import Data.Product
|
||||
open import Cubical
|
||||
|
||||
open import Cat.Category
|
||||
open import Cat.Product
|
||||
|
||||
open Category
|
||||
|
||||
module _ {ℓ ℓ'} (ℂ : Category ℓ ℓ') {{hasProducts : HasProducts ℂ}} where
|
||||
open HasProducts hasProducts
|
||||
open Product hiding (obj)
|
||||
private
|
||||
_×p_ : (A B : Object ℂ) → Object ℂ
|
||||
_×p_ A B = Product.obj (product A B)
|
||||
|
||||
module _ (B C : Object ℂ) where
|
||||
IsExponential : (Cᴮ : Object ℂ) → ℂ [ Cᴮ ×p B , C ] → Set (ℓ ⊔ ℓ')
|
||||
IsExponential Cᴮ eval = ∀ (A : Object ℂ) (f : ℂ [ A ×p B , C ])
|
||||
→ ∃![ f~ ] (ℂ [ eval ∘ parallelProduct f~ (Category.𝟙 ℂ)] ≡ f)
|
||||
|
||||
record Exponential : Set (ℓ ⊔ ℓ') where
|
||||
field
|
||||
-- obj ≡ Cᴮ
|
||||
obj : Object ℂ
|
||||
eval : ℂ [ obj ×p B , C ]
|
||||
{{isExponential}} : IsExponential obj eval
|
||||
-- If I make this an instance-argument then the instance resolution
|
||||
-- algorithm goes into an infinite loop. Why?
|
||||
exponentialsHaveProducts : HasProducts ℂ
|
||||
exponentialsHaveProducts = hasProducts
|
||||
transpose : (A : Object ℂ) → ℂ [ A ×p B , C ] → ℂ [ A , obj ]
|
||||
transpose A f = proj₁ (isExponential A f)
|
||||
|
||||
record HasExponentials {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') {{_ : HasProducts ℂ}} : Set (ℓ ⊔ ℓ') where
|
||||
field
|
||||
exponent : (A B : Object ℂ) → Exponential ℂ A B
|
50
src/Cat/Product.agda
Normal file
50
src/Cat/Product.agda
Normal file
|
@ -0,0 +1,50 @@
|
|||
module Cat.Product where
|
||||
|
||||
open import Agda.Primitive
|
||||
open import Data.Product
|
||||
open import Cubical
|
||||
|
||||
open import Cat.Category
|
||||
|
||||
open Category
|
||||
|
||||
module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') {A B obj : Object ℂ} where
|
||||
IsProduct : (π₁ : ℂ [ obj , A ]) (π₂ : ℂ [ obj , B ]) → Set (ℓ ⊔ ℓ')
|
||||
IsProduct π₁ π₂
|
||||
= ∀ {X : Object ℂ} (x₁ : ℂ [ X , A ]) (x₂ : ℂ [ X , B ])
|
||||
→ ∃![ x ] (ℂ [ π₁ ∘ x ] ≡ x₁ × ℂ [ π₂ ∘ x ] ≡ x₂)
|
||||
|
||||
-- Tip from Andrea; Consider this style for efficiency:
|
||||
-- record IsProduct {ℓ ℓ' : Level} (ℂ : Category {ℓ} {ℓ'})
|
||||
-- {A B obj : Object ℂ} (π₁ : Arrow ℂ obj A) (π₂ : Arrow ℂ obj B) : Set (ℓ ⊔ ℓ') where
|
||||
-- field
|
||||
-- isProduct : ∀ {X : ℂ .Object} (x₁ : ℂ .Arrow X A) (x₂ : ℂ .Arrow X B)
|
||||
-- → ∃![ x ] (ℂ ._⊕_ π₁ x ≡ x₁ × ℂ. _⊕_ π₂ x ≡ x₂)
|
||||
|
||||
record Product {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} (A B : Object ℂ) : Set (ℓ ⊔ ℓ') where
|
||||
no-eta-equality
|
||||
field
|
||||
obj : Object ℂ
|
||||
proj₁ : ℂ [ obj , A ]
|
||||
proj₂ : ℂ [ obj , B ]
|
||||
{{isProduct}} : IsProduct ℂ proj₁ proj₂
|
||||
|
||||
arrowProduct : ∀ {X} → (π₁ : ℂ [ X , A ]) (π₂ : ℂ [ X , B ])
|
||||
→ ℂ [ X , obj ]
|
||||
arrowProduct π₁ π₂ = proj₁ (isProduct π₁ π₂)
|
||||
|
||||
record HasProducts {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') : Set (ℓ ⊔ ℓ') where
|
||||
field
|
||||
product : ∀ (A B : Object ℂ) → Product {ℂ = ℂ} A B
|
||||
|
||||
open Product
|
||||
|
||||
objectProduct : (A B : Object ℂ) → Object ℂ
|
||||
objectProduct A B = Product.obj (product A B)
|
||||
-- The product mentioned in awodey in Def 6.1 is not the regular product of arrows.
|
||||
-- It's a "parallel" product
|
||||
parallelProduct : {A A' B B' : Object ℂ} → ℂ [ A , A' ] → ℂ [ B , B' ]
|
||||
→ ℂ [ objectProduct A B , objectProduct A' B' ]
|
||||
parallelProduct {A = A} {A' = A'} {B = B} {B' = B'} a b = arrowProduct (product A' B')
|
||||
(ℂ [ a ∘ (product A B) .proj₁ ])
|
||||
(ℂ [ b ∘ (product A B) .proj₂ ])
|
Loading…
Reference in a new issue