51 lines
2 KiB
Agda
51 lines
2 KiB
Agda
module Cat.Product where
|
||
|
||
open import Agda.Primitive
|
||
open import Data.Product
|
||
open import Cubical
|
||
|
||
open import Cat.Category
|
||
|
||
open Category
|
||
|
||
module _ {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') {A B obj : Object ℂ} where
|
||
IsProduct : (π₁ : ℂ [ obj , A ]) (π₂ : ℂ [ obj , B ]) → Set (ℓ ⊔ ℓ')
|
||
IsProduct π₁ π₂
|
||
= ∀ {X : Object ℂ} (x₁ : ℂ [ X , A ]) (x₂ : ℂ [ X , B ])
|
||
→ ∃![ x ] (ℂ [ π₁ ∘ x ] ≡ x₁ × ℂ [ π₂ ∘ x ] ≡ x₂)
|
||
|
||
-- Tip from Andrea; Consider this style for efficiency:
|
||
-- record IsProduct {ℓ ℓ' : Level} (ℂ : Category {ℓ} {ℓ'})
|
||
-- {A B obj : Object ℂ} (π₁ : Arrow ℂ obj A) (π₂ : Arrow ℂ obj B) : Set (ℓ ⊔ ℓ') where
|
||
-- field
|
||
-- isProduct : ∀ {X : ℂ .Object} (x₁ : ℂ .Arrow X A) (x₂ : ℂ .Arrow X B)
|
||
-- → ∃![ x ] (ℂ ._⊕_ π₁ x ≡ x₁ × ℂ. _⊕_ π₂ x ≡ x₂)
|
||
|
||
record Product {ℓ ℓ' : Level} {ℂ : Category ℓ ℓ'} (A B : Object ℂ) : Set (ℓ ⊔ ℓ') where
|
||
no-eta-equality
|
||
field
|
||
obj : Object ℂ
|
||
proj₁ : ℂ [ obj , A ]
|
||
proj₂ : ℂ [ obj , B ]
|
||
{{isProduct}} : IsProduct ℂ proj₁ proj₂
|
||
|
||
arrowProduct : ∀ {X} → (π₁ : ℂ [ X , A ]) (π₂ : ℂ [ X , B ])
|
||
→ ℂ [ X , obj ]
|
||
arrowProduct π₁ π₂ = proj₁ (isProduct π₁ π₂)
|
||
|
||
record HasProducts {ℓ ℓ' : Level} (ℂ : Category ℓ ℓ') : Set (ℓ ⊔ ℓ') where
|
||
field
|
||
product : ∀ (A B : Object ℂ) → Product {ℂ = ℂ} A B
|
||
|
||
open Product
|
||
|
||
objectProduct : (A B : Object ℂ) → Object ℂ
|
||
objectProduct A B = Product.obj (product A B)
|
||
-- The product mentioned in awodey in Def 6.1 is not the regular product of arrows.
|
||
-- It's a "parallel" product
|
||
parallelProduct : {A A' B B' : Object ℂ} → ℂ [ A , A' ] → ℂ [ B , B' ]
|
||
→ ℂ [ objectProduct A B , objectProduct A' B' ]
|
||
parallelProduct {A = A} {A' = A'} {B = B} {B' = B'} a b = arrowProduct (product A' B')
|
||
(ℂ [ a ∘ (product A B) .proj₁ ])
|
||
(ℂ [ b ∘ (product A B) .proj₂ ])
|