Add additional example of pathJ
This commit is contained in:
parent
058f3c15a8
commit
30cf0bb765
|
@ -288,7 +288,7 @@ The proof will be by induction on $p$ and will be based at $a$. That is, $D$
|
||||||
will be the family:
|
will be the family:
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
D & \tp \prod_{b' \tp A} \prod_{p \tp a ≡ b'ma} \MCU \\
|
D & \tp \prod_{b' \tp A} \prod_{p \tp a ≡ b'} \MCU \\
|
||||||
D\ b'\ p' & \defeq \var{sym}\ (\var{sym}\ p') ≡ p'
|
D\ b'\ p' & \defeq \var{sym}\ (\var{sym}\ p') ≡ p'
|
||||||
\end{align*}
|
\end{align*}
|
||||||
%
|
%
|
||||||
|
@ -303,11 +303,45 @@ The reason $\refl$ proves this is that $\var{sym}\ \refl = \refl$ holds
|
||||||
definitionally. In summary \ref{eq:sym-invol} is inhabited by the term:
|
definitionally. In summary \ref{eq:sym-invol} is inhabited by the term:
|
||||||
%
|
%
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\pathJ\ (λ\ b'\ p' → \var{sym}\ (\var{sym}\ p') ≡ p')\ \var{refl}\ b\ p
|
\pathJ\ D\ d\ b\ p
|
||||||
\tp
|
\tp
|
||||||
\var{sym}\ (\var{sym}\ p) ≡ p
|
\var{sym}\ (\var{sym}\ p) ≡ p
|
||||||
\end{align*}
|
\end{align*}
|
||||||
%
|
%
|
||||||
|
Another application of $\pathJ$ is for proving associativity of $\trans$. That
|
||||||
|
is, given a type $A \tp \MCU$, elements of $A$, $a, b, c, d \tp A$ and paths
|
||||||
|
between them, $p \tp a \equiv b$, $q \tp b \equiv c$ and $r \tp c \equiv d$ we
|
||||||
|
have the following:
|
||||||
|
%
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:cum-trans}
|
||||||
|
\trans\ p\ (\trans\ q\ r) ≡ \trans\ (\trans\ p\ q)\ r
|
||||||
|
\end{equation}
|
||||||
|
%
|
||||||
|
In this case the induction will be based at $c$ (the left-endpoint of $r$) and
|
||||||
|
over the family:
|
||||||
|
%
|
||||||
|
\begin{align*}
|
||||||
|
T & \tp \prod_{d' \tp A} \prod_{r' \tp c ≡ d'} \MCU \\
|
||||||
|
T\ d'\ r' & \defeq \trans\ p\ (\trans\ q\ r') ≡ \trans\ (\trans\ p\ q)\ r'
|
||||||
|
\end{align*}
|
||||||
|
%
|
||||||
|
So the base-case is proven with $t$ which is defined as:
|
||||||
|
%
|
||||||
|
\begin{align*}
|
||||||
|
\trans\ p\ (\trans\ q\ \refl) & ≡
|
||||||
|
\trans\ p\ q \\
|
||||||
|
& ≡
|
||||||
|
\trans\ (\trans\ p\ q)\ \refl
|
||||||
|
\end{align*}
|
||||||
|
%
|
||||||
|
Here we have used the proposition $\trans\ p\ \refl \equiv p$ without proof. In
|
||||||
|
conclusion \ref{eq:cum-trans} is inhabited by the term:
|
||||||
|
%
|
||||||
|
\begin{align*}
|
||||||
|
\pathJ\ T\ t\ d\ r
|
||||||
|
\end{align*}
|
||||||
|
%
|
||||||
We shall see another application on path-induction in \ref{eq:pathJ-example}.
|
We shall see another application on path-induction in \ref{eq:pathJ-example}.
|
||||||
|
|
||||||
\subsection{Paths over propositions}
|
\subsection{Paths over propositions}
|
||||||
|
|
|
@ -91,4 +91,5 @@
|
||||||
\newcommand\Endo[1]{\varindex{Endo}\ #1}
|
\newcommand\Endo[1]{\varindex{Endo}\ #1}
|
||||||
\newcommand\EndoR{\mathcal{R}}
|
\newcommand\EndoR{\mathcal{R}}
|
||||||
\newcommand\funExt{\varindex{funExt}}
|
\newcommand\funExt{\varindex{funExt}}
|
||||||
\newcommand{\suc}[1]{\mathit{suc}\ #1}
|
\newcommand{\suc}[1]{\varindex{suc}\ #1}
|
||||||
|
\newcommand{\trans}{\varindex{trans}}
|
||||||
|
|
Loading…
Reference in a new issue