Do not export helpers in Fun
This commit is contained in:
parent
629115661b
commit
31257a4d97
|
@ -69,6 +69,7 @@ module Fun {ℓc ℓc' ℓd ℓd' : Level} (ℂ : Category ℓc ℓc') (𝔻 : C
|
||||||
open RawCategory RawFun
|
open RawCategory RawFun
|
||||||
open Univalence (λ {A} {B} {f} → isIdentity {A} {B} {f})
|
open Univalence (λ {A} {B} {f} → isIdentity {A} {B} {f})
|
||||||
|
|
||||||
|
private
|
||||||
module _ {A B : Functor ℂ 𝔻} where
|
module _ {A B : Functor ℂ 𝔻} where
|
||||||
module A = Functor A
|
module A = Functor A
|
||||||
module B = Functor B
|
module B = Functor B
|
||||||
|
|
|
@ -328,6 +328,8 @@ module _ {ℓ : Level} where
|
||||||
SetsHasProducts = record { product = product }
|
SetsHasProducts = record { product = product }
|
||||||
|
|
||||||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
|
open Category ℂ
|
||||||
|
|
||||||
-- Covariant Presheaf
|
-- Covariant Presheaf
|
||||||
Representable : Set (ℓa ⊔ lsuc ℓb)
|
Representable : Set (ℓa ⊔ lsuc ℓb)
|
||||||
Representable = Functor ℂ (𝓢𝓮𝓽 ℓb)
|
Representable = Functor ℂ (𝓢𝓮𝓽 ℓb)
|
||||||
|
@ -336,8 +338,6 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
Presheaf : Set (ℓa ⊔ lsuc ℓb)
|
Presheaf : Set (ℓa ⊔ lsuc ℓb)
|
||||||
Presheaf = Functor (opposite ℂ) (𝓢𝓮𝓽 ℓb)
|
Presheaf = Functor (opposite ℂ) (𝓢𝓮𝓽 ℓb)
|
||||||
|
|
||||||
open Category ℂ
|
|
||||||
|
|
||||||
-- The "co-yoneda" embedding.
|
-- The "co-yoneda" embedding.
|
||||||
representable : Category.Object ℂ → Representable
|
representable : Category.Object ℂ → Representable
|
||||||
representable A = record
|
representable A = record
|
||||||
|
|
|
@ -28,9 +28,12 @@ module _ {ℓ : Level} {ℂ : Category ℓ ℓ} where
|
||||||
private
|
private
|
||||||
𝓢 = Sets ℓ
|
𝓢 = Sets ℓ
|
||||||
open Fun (opposite ℂ) 𝓢
|
open Fun (opposite ℂ) 𝓢
|
||||||
presheaf = Cat.Categories.Sets.presheaf ℂ
|
|
||||||
module ℂ = Category ℂ
|
module ℂ = Category ℂ
|
||||||
|
|
||||||
|
presheaf : ℂ.Object → Presheaf ℂ
|
||||||
|
presheaf = Cat.Categories.Sets.presheaf ℂ
|
||||||
|
|
||||||
module _ {A B : ℂ.Object} (f : ℂ [ A , B ]) where
|
module _ {A B : ℂ.Object} (f : ℂ [ A , B ]) where
|
||||||
fmap : Transformation (presheaf A) (presheaf B)
|
fmap : Transformation (presheaf A) (presheaf B)
|
||||||
fmap C x = ℂ [ f ∘ x ]
|
fmap C x = ℂ [ f ∘ x ]
|
||||||
|
|
Loading…
Reference in a new issue