Do not export helpers in Fun
This commit is contained in:
parent
629115661b
commit
31257a4d97
|
@ -69,54 +69,55 @@ module Fun {ℓc ℓc' ℓd ℓd' : Level} (ℂ : Category ℓc ℓc') (𝔻 : C
|
||||||
open RawCategory RawFun
|
open RawCategory RawFun
|
||||||
open Univalence (λ {A} {B} {f} → isIdentity {A} {B} {f})
|
open Univalence (λ {A} {B} {f} → isIdentity {A} {B} {f})
|
||||||
|
|
||||||
module _ {A B : Functor ℂ 𝔻} where
|
private
|
||||||
module A = Functor A
|
module _ {A B : Functor ℂ 𝔻} where
|
||||||
module B = Functor B
|
module A = Functor A
|
||||||
module _ (p : A ≡ B) where
|
module B = Functor B
|
||||||
omapP : A.omap ≡ B.omap
|
module _ (p : A ≡ B) where
|
||||||
omapP i = Functor.omap (p i)
|
omapP : A.omap ≡ B.omap
|
||||||
|
omapP i = Functor.omap (p i)
|
||||||
|
|
||||||
coerceAB : ∀ {X} → 𝔻 [ A.omap X , A.omap X ] ≡ 𝔻 [ A.omap X , B.omap X ]
|
coerceAB : ∀ {X} → 𝔻 [ A.omap X , A.omap X ] ≡ 𝔻 [ A.omap X , B.omap X ]
|
||||||
coerceAB {X} = cong (λ φ → 𝔻 [ A.omap X , φ X ]) omapP
|
coerceAB {X} = cong (λ φ → 𝔻 [ A.omap X , φ X ]) omapP
|
||||||
|
|
||||||
-- The transformation will be the identity on 𝔻. Such an arrow has the
|
-- The transformation will be the identity on 𝔻. Such an arrow has the
|
||||||
-- type `A.omap A → A.omap A`. Which we can coerce to have the type
|
-- type `A.omap A → A.omap A`. Which we can coerce to have the type
|
||||||
-- `A.omap → B.omap` since `A` and `B` are equal.
|
-- `A.omap → B.omap` since `A` and `B` are equal.
|
||||||
coe𝟙 : Transformation A B
|
coe𝟙 : Transformation A B
|
||||||
coe𝟙 X = coe coerceAB 𝔻.𝟙
|
coe𝟙 X = coe coerceAB 𝔻.𝟙
|
||||||
|
|
||||||
module _ {a b : ℂ.Object} (f : ℂ [ a , b ]) where
|
module _ {a b : ℂ.Object} (f : ℂ [ a , b ]) where
|
||||||
nat' : 𝔻 [ coe𝟙 b ∘ A.fmap f ] ≡ 𝔻 [ B.fmap f ∘ coe𝟙 a ]
|
nat' : 𝔻 [ coe𝟙 b ∘ A.fmap f ] ≡ 𝔻 [ B.fmap f ∘ coe𝟙 a ]
|
||||||
nat' = begin
|
nat' = begin
|
||||||
(𝔻 [ coe𝟙 b ∘ A.fmap f ]) ≡⟨ {!!} ⟩
|
(𝔻 [ coe𝟙 b ∘ A.fmap f ]) ≡⟨ {!!} ⟩
|
||||||
(𝔻 [ B.fmap f ∘ coe𝟙 a ]) ∎
|
(𝔻 [ B.fmap f ∘ coe𝟙 a ]) ∎
|
||||||
|
|
||||||
transs : (i : I) → Transformation A (p i)
|
transs : (i : I) → Transformation A (p i)
|
||||||
transs = {!!}
|
transs = {!!}
|
||||||
|
|
||||||
natt : (i : I) → Natural A (p i) {!!}
|
natt : (i : I) → Natural A (p i) {!!}
|
||||||
natt = {!!}
|
natt = {!!}
|
||||||
|
|
||||||
t : Natural A B coe𝟙
|
t : Natural A B coe𝟙
|
||||||
t = coe c (identityNatural A)
|
t = coe c (identityNatural A)
|
||||||
where
|
where
|
||||||
c : Natural A A (identityTrans A) ≡ Natural A B coe𝟙
|
c : Natural A A (identityTrans A) ≡ Natural A B coe𝟙
|
||||||
c = begin
|
c = begin
|
||||||
Natural A A (identityTrans A) ≡⟨ (λ x → {!natt ?!}) ⟩
|
Natural A A (identityTrans A) ≡⟨ (λ x → {!natt ?!}) ⟩
|
||||||
Natural A B coe𝟙 ∎
|
Natural A B coe𝟙 ∎
|
||||||
-- cong (λ φ → {!Natural A A (identityTrans A)!}) {!!}
|
-- cong (λ φ → {!Natural A A (identityTrans A)!}) {!!}
|
||||||
|
|
||||||
k : Natural A A (identityTrans A) → Natural A B coe𝟙
|
k : Natural A A (identityTrans A) → Natural A B coe𝟙
|
||||||
k n {a} {b} f = res
|
k n {a} {b} f = res
|
||||||
where
|
where
|
||||||
res : (𝔻 [ coe𝟙 b ∘ A.fmap f ]) ≡ (𝔻 [ B.fmap f ∘ coe𝟙 a ])
|
res : (𝔻 [ coe𝟙 b ∘ A.fmap f ]) ≡ (𝔻 [ B.fmap f ∘ coe𝟙 a ])
|
||||||
res = {!!}
|
res = {!!}
|
||||||
|
|
||||||
nat : Natural A B coe𝟙
|
nat : Natural A B coe𝟙
|
||||||
nat = nat'
|
nat = nat'
|
||||||
|
|
||||||
fromEq : NaturalTransformation A B
|
fromEq : NaturalTransformation A B
|
||||||
fromEq = coe𝟙 , nat
|
fromEq = coe𝟙 , nat
|
||||||
|
|
||||||
module _ {A B : Functor ℂ 𝔻} where
|
module _ {A B : Functor ℂ 𝔻} where
|
||||||
obverse : A ≡ B → A ≅ B
|
obverse : A ≡ B → A ≅ B
|
||||||
|
|
|
@ -328,6 +328,8 @@ module _ {ℓ : Level} where
|
||||||
SetsHasProducts = record { product = product }
|
SetsHasProducts = record { product = product }
|
||||||
|
|
||||||
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
|
open Category ℂ
|
||||||
|
|
||||||
-- Covariant Presheaf
|
-- Covariant Presheaf
|
||||||
Representable : Set (ℓa ⊔ lsuc ℓb)
|
Representable : Set (ℓa ⊔ lsuc ℓb)
|
||||||
Representable = Functor ℂ (𝓢𝓮𝓽 ℓb)
|
Representable = Functor ℂ (𝓢𝓮𝓽 ℓb)
|
||||||
|
@ -336,8 +338,6 @@ module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
||||||
Presheaf : Set (ℓa ⊔ lsuc ℓb)
|
Presheaf : Set (ℓa ⊔ lsuc ℓb)
|
||||||
Presheaf = Functor (opposite ℂ) (𝓢𝓮𝓽 ℓb)
|
Presheaf = Functor (opposite ℂ) (𝓢𝓮𝓽 ℓb)
|
||||||
|
|
||||||
open Category ℂ
|
|
||||||
|
|
||||||
-- The "co-yoneda" embedding.
|
-- The "co-yoneda" embedding.
|
||||||
representable : Category.Object ℂ → Representable
|
representable : Category.Object ℂ → Representable
|
||||||
representable A = record
|
representable A = record
|
||||||
|
|
|
@ -28,9 +28,12 @@ module _ {ℓ : Level} {ℂ : Category ℓ ℓ} where
|
||||||
private
|
private
|
||||||
𝓢 = Sets ℓ
|
𝓢 = Sets ℓ
|
||||||
open Fun (opposite ℂ) 𝓢
|
open Fun (opposite ℂ) 𝓢
|
||||||
presheaf = Cat.Categories.Sets.presheaf ℂ
|
|
||||||
module ℂ = Category ℂ
|
module ℂ = Category ℂ
|
||||||
|
|
||||||
|
presheaf : ℂ.Object → Presheaf ℂ
|
||||||
|
presheaf = Cat.Categories.Sets.presheaf ℂ
|
||||||
|
|
||||||
module _ {A B : ℂ.Object} (f : ℂ [ A , B ]) where
|
module _ {A B : ℂ.Object} (f : ℂ [ A , B ]) where
|
||||||
fmap : Transformation (presheaf A) (presheaf B)
|
fmap : Transformation (presheaf A) (presheaf B)
|
||||||
fmap C x = ℂ [ f ∘ x ]
|
fmap C x = ℂ [ f ∘ x ]
|
||||||
|
|
Loading…
Reference in a new issue