Formatting
This commit is contained in:
parent
a0944d69b1
commit
5b5d21f777
|
@ -24,14 +24,14 @@ module Monoidal {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
-- R ~ m
|
||||
R : Functor ℂ ℂ
|
||||
-- η ~ pure
|
||||
ηNat : NaturalTransformation F.identity R
|
||||
ηNatTrans : NaturalTransformation F.identity R
|
||||
-- μ ~ join
|
||||
μNat : NaturalTransformation F[ R ∘ R ] R
|
||||
μNatTrans : NaturalTransformation F[ R ∘ R ] R
|
||||
|
||||
η : Transformation F.identity R
|
||||
η = proj₁ ηNat
|
||||
η = proj₁ ηNatTrans
|
||||
μ : Transformation F[ R ∘ R ] R
|
||||
μ = proj₁ μNat
|
||||
μ = proj₁ μNatTrans
|
||||
|
||||
private
|
||||
module R = Functor R
|
||||
|
@ -122,17 +122,17 @@ module Kleisli {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
isIdentity : IsIdentity
|
||||
isNatural : IsNatural
|
||||
isDistributive : IsDistributive
|
||||
|
||||
-- | Map fusion is admissable.
|
||||
fusion : Fusion
|
||||
fusion {g = g} {f} = begin
|
||||
fmap (g ∘ f) ≡⟨⟩
|
||||
-- f >=> g = >>= g ∘ f
|
||||
fmap (g ∘ f) ≡⟨⟩
|
||||
bind ((f >>> g) >>> pure) ≡⟨ cong bind isAssociative ⟩
|
||||
bind (f >>> (g >>> pure)) ≡⟨ cong (λ φ → bind (f >>> φ)) (sym (isNatural _)) ⟩
|
||||
bind (f >>> (pure >>> (bind (g >>> pure)))) ≡⟨⟩
|
||||
bind (f >>> (pure >>> fmap g)) ≡⟨⟩
|
||||
bind ((fmap g ∘ pure) ∘ f) ≡⟨ cong bind (sym isAssociative) ⟩
|
||||
bind
|
||||
(fmap g ∘ (pure ∘ f)) ≡⟨ sym lem ⟩
|
||||
bind (fmap g ∘ (pure ∘ f)) ≡⟨ sym lem ⟩
|
||||
bind (pure ∘ g) ∘ bind (pure ∘ f) ≡⟨⟩
|
||||
fmap g ∘ fmap f ∎
|
||||
where
|
||||
|
@ -155,7 +155,9 @@ module Kleisli {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
|||
res : (λ i → IsMonad (eq i)) [ Monad.isMonad m ≡ Monad.isMonad n ]
|
||||
res = {!!}
|
||||
|
||||
-- Problem 2.3
|
||||
-- | The monoidal- and kleisli presentation of monads are equivalent.
|
||||
--
|
||||
-- This is problem 2.3 in [voe].
|
||||
module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
||||
private
|
||||
open Category ℂ using (Object ; Arrow ; 𝟙 ; _∘_)
|
||||
|
@ -179,15 +181,15 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
bind {X} {Y} f = μ Y ∘ func→ R f
|
||||
|
||||
forthRaw : K.RawMonad
|
||||
Kraw.RR forthRaw = RR
|
||||
Kraw.pure forthRaw = pure
|
||||
Kraw.RR forthRaw = RR
|
||||
Kraw.pure forthRaw = pure
|
||||
Kraw.bind forthRaw = bind
|
||||
|
||||
module _ {raw : M.RawMonad} (m : M.IsMonad raw) where
|
||||
private
|
||||
open M.IsMonad m
|
||||
open K.RawMonad (forthRaw raw)
|
||||
module Kis = K.IsMonad
|
||||
module R = Functor R
|
||||
|
||||
isIdentity : IsIdentity
|
||||
isIdentity {X} = begin
|
||||
|
@ -196,10 +198,9 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
μ X ∘ func→ R (η X) ≡⟨ proj₂ isInverse ⟩
|
||||
𝟙 ∎
|
||||
|
||||
module R = Functor R
|
||||
isNatural : IsNatural
|
||||
isNatural {X} {Y} f = begin
|
||||
bind f ∘ pure ≡⟨⟩
|
||||
bind f ∘ pure ≡⟨⟩
|
||||
bind f ∘ η X ≡⟨⟩
|
||||
μ Y ∘ R.func→ f ∘ η X ≡⟨ sym ℂ.isAssociative ⟩
|
||||
μ Y ∘ (R.func→ f ∘ η X) ≡⟨ cong (λ φ → μ Y ∘ φ) (sym (ηN f)) ⟩
|
||||
|
@ -211,11 +212,11 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
open NaturalTransformation
|
||||
module ℂ = Category ℂ
|
||||
ηN : Natural ℂ ℂ F.identity R η
|
||||
ηN = proj₂ ηNat
|
||||
ηN = proj₂ ηNatTrans
|
||||
|
||||
isDistributive : IsDistributive
|
||||
isDistributive {X} {Y} {Z} g f = begin
|
||||
bind g ∘ bind f ≡⟨⟩
|
||||
bind g ∘ bind f ≡⟨⟩
|
||||
μ Z ∘ R.func→ g ∘ (μ Y ∘ R.func→ f) ≡⟨ sym lem2 ⟩
|
||||
μ Z ∘ R.func→ (μ Z ∘ R.func→ g ∘ f) ≡⟨⟩
|
||||
μ Z ∘ R.func→ (bind g ∘ f) ∎
|
||||
|
@ -243,16 +244,17 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
→ {a : Arrow D E} {b : Arrow C D} {c : Arrow B C} {d : Arrow A B}
|
||||
→ a ∘ (b ∘ c ∘ d) ≡ a ∘ b ∘ c ∘ d
|
||||
comm = {!!}
|
||||
μN = proj₂ μNat
|
||||
μN = proj₂ μNatTrans
|
||||
lemmm : μ Z ∘ R.func→ (μ Z) ≡ μ Z ∘ μ (R.func* Z)
|
||||
lemmm = isAssociative
|
||||
lem4 : μ (R.func* Z) ∘ RR.func→ g ≡ R.func→ g ∘ μ Y
|
||||
lem4 = μN g
|
||||
|
||||
module KI = K.IsMonad
|
||||
forthIsMonad : K.IsMonad (forthRaw raw)
|
||||
Kis.isIdentity forthIsMonad = isIdentity
|
||||
Kis.isNatural forthIsMonad = isNatural
|
||||
Kis.isDistributive forthIsMonad = isDistributive
|
||||
KI.isIdentity forthIsMonad = isIdentity
|
||||
KI.isNatural forthIsMonad = isNatural
|
||||
KI.isDistributive forthIsMonad = isDistributive
|
||||
|
||||
forth : M.Monad → K.Monad
|
||||
Kleisli.Monad.raw (forth m) = forthRaw (M.Monad.raw m)
|
||||
|
@ -262,41 +264,42 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
private
|
||||
module ℂ = Category ℂ
|
||||
open K.Monad m
|
||||
module Mraw = M.RawMonad
|
||||
open NaturalTransformation ℂ ℂ
|
||||
|
||||
rawR : RawFunctor ℂ ℂ
|
||||
RawFunctor.func* rawR = RR
|
||||
RawFunctor.func* rawR = RR
|
||||
RawFunctor.func→ rawR f = bind (pure ∘ f)
|
||||
|
||||
isFunctorR : IsFunctor ℂ ℂ rawR
|
||||
IsFunctor.isIdentity isFunctorR = begin
|
||||
IsFunctor.isIdentity isFunctorR = begin
|
||||
bind (pure ∘ 𝟙) ≡⟨ cong bind (proj₁ ℂ.isIdentity) ⟩
|
||||
bind pure ≡⟨ isIdentity ⟩
|
||||
𝟙 ∎
|
||||
𝟙 ∎
|
||||
|
||||
IsFunctor.isDistributive isFunctorR {f = f} {g} = begin
|
||||
bind (pure ∘ (g ∘ f)) ≡⟨⟩
|
||||
fmap (g ∘ f) ≡⟨ fusion ⟩
|
||||
fmap g ∘ fmap f ≡⟨⟩
|
||||
bind (pure ∘ (g ∘ f)) ≡⟨⟩
|
||||
fmap (g ∘ f) ≡⟨ fusion ⟩
|
||||
fmap g ∘ fmap f ≡⟨⟩
|
||||
bind (pure ∘ g) ∘ bind (pure ∘ f) ∎
|
||||
|
||||
R : Functor ℂ ℂ
|
||||
Functor.raw R = rawR
|
||||
Functor.isFunctor R = isFunctorR
|
||||
|
||||
R2 : Functor ℂ ℂ
|
||||
R2 = F[ R ∘ R ]
|
||||
R² : Functor ℂ ℂ
|
||||
R² = F[ R ∘ R ]
|
||||
|
||||
ηNat : NaturalTransformation F.identity R
|
||||
ηNat = {!!}
|
||||
ηNatTrans : NaturalTransformation F.identity R
|
||||
ηNatTrans = {!!}
|
||||
|
||||
μNat : NaturalTransformation R2 R
|
||||
μNat = {!!}
|
||||
μNatTrans : NaturalTransformation R² R
|
||||
μNatTrans = {!!}
|
||||
|
||||
module MR = M.RawMonad
|
||||
backRaw : M.RawMonad
|
||||
Mraw.R backRaw = R
|
||||
Mraw.ηNat backRaw = ηNat
|
||||
Mraw.μNat backRaw = μNat
|
||||
MR.R backRaw = R
|
||||
MR.ηNatTrans backRaw = ηNatTrans
|
||||
MR.μNatTrans backRaw = μNatTrans
|
||||
|
||||
module _ (m : K.Monad) where
|
||||
open K.Monad m
|
||||
|
@ -314,10 +317,10 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
module _ (m : K.Monad) where
|
||||
open K.RawMonad (K.Monad.raw m)
|
||||
forthRawEq : forthRaw (backRaw m) ≡ K.Monad.raw m
|
||||
K.RawMonad.RR (forthRawEq _) = RR
|
||||
K.RawMonad.RR (forthRawEq _) = RR
|
||||
K.RawMonad.pure (forthRawEq _) = pure
|
||||
-- stuck
|
||||
K.RawMonad.bind (forthRawEq i) = {!!}
|
||||
K.RawMonad.bind (forthRawEq i) = {!!}
|
||||
|
||||
fortheq : (m : K.Monad) → forth (back m) ≡ m
|
||||
fortheq m = K.Monad≡ (forthRawEq m)
|
||||
|
@ -326,9 +329,9 @@ module _ {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} where
|
|||
open M.RawMonad (M.Monad.raw m)
|
||||
backRawEq : backRaw (forth m) ≡ M.Monad.raw m
|
||||
-- stuck
|
||||
M.RawMonad.R (backRawEq i) = {!!}
|
||||
M.RawMonad.ηNat (backRawEq i) = {!!}
|
||||
M.RawMonad.μNat (backRawEq i) = {!!}
|
||||
M.RawMonad.R (backRawEq i) = {!!}
|
||||
M.RawMonad.ηNatTrans (backRawEq i) = {!!}
|
||||
M.RawMonad.μNatTrans (backRawEq i) = {!!}
|
||||
|
||||
backeq : (m : M.Monad) → back (forth m) ≡ m
|
||||
backeq m = M.Monad≡ (backRawEq m)
|
||||
|
|
Loading…
Reference in a new issue