Do not use colon directly for typing judgments
This commit is contained in:
parent
e18730e0e5
commit
6a3e7390d7
|
@ -47,7 +47,7 @@ heterogeneous paths respectively.
|
||||||
In Cubical Agda judgmental equality is encapsulated with the type:
|
In Cubical Agda judgmental equality is encapsulated with the type:
|
||||||
%
|
%
|
||||||
$$
|
$$
|
||||||
\Path \tp (P : I → \MCU) → P\ 0 → P\ 1 → \MCU
|
\Path \tp (P \tp I → \MCU) → P\ 0 → P\ 1 → \MCU
|
||||||
$$
|
$$
|
||||||
%
|
%
|
||||||
$I$ is a special data-type (\TODO{that also has special computational properties
|
$I$ is a special data-type (\TODO{that also has special computational properties
|
||||||
|
@ -244,7 +244,7 @@ $\lemPropF$ can be used to boil this complexity down to showing that the
|
||||||
dependent parts of the type are mere propositions. For instance, saw we have a type:
|
dependent parts of the type are mere propositions. For instance, saw we have a type:
|
||||||
%
|
%
|
||||||
$$
|
$$
|
||||||
T \defeq \sum_{a : A} P\ a
|
T \defeq \sum_{a \tp A} P\ a
|
||||||
$$
|
$$
|
||||||
%
|
%
|
||||||
For some proposition $P \tp A \to \MCU$. If we want to prove $t_0 \equiv t_1$
|
For some proposition $P \tp A \to \MCU$. If we want to prove $t_0 \equiv t_1$
|
||||||
|
|
|
@ -85,7 +85,7 @@ Moreover, due to substitution for paths we can construct an isomorphism from
|
||||||
\emph{any} path:
|
\emph{any} path:
|
||||||
%
|
%
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\var{idToIso} : A ≡ B → A ≊ B
|
\var{idToIso} \tp A ≡ B → A ≊ B
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%
|
%
|
||||||
The univalence criterion for categories states that this map must be an
|
The univalence criterion for categories states that this map must be an
|
||||||
|
|
|
@ -21,10 +21,10 @@ Consider the functions:
|
||||||
\begin{multicols}{2}
|
\begin{multicols}{2}
|
||||||
\noindent
|
\noindent
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
f \defeq (n : \bN) \mapsto (0 + n : \bN)
|
f \defeq (n \tp \bN) \mapsto (0 + n \tp \bN)
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
g \defeq (n : \bN) \mapsto (n + 0 : \bN)
|
g \defeq (n \tp \bN) \mapsto (n + 0 \tp \bN)
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
\end{multicols}
|
\end{multicols}
|
||||||
%
|
%
|
||||||
|
@ -35,7 +35,7 @@ which is:
|
||||||
%
|
%
|
||||||
\newcommand{\suc}[1]{\mathit{suc}\ #1}
|
\newcommand{\suc}[1]{\mathit{suc}\ #1}
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
+ & : \bN \to \bN \to \bN \\
|
+ & \tp \bN \to \bN \to \bN \\
|
||||||
n + 0 & \defeq n \\
|
n + 0 & \defeq n \\
|
||||||
n + (\suc{m}) & \defeq \suc{(n + m)}
|
n + (\suc{m}) & \defeq \suc{(n + m)}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
@ -154,7 +154,7 @@ still have univalence and functional extensionality. One option is to postulate
|
||||||
these as axioms. This approach, however, has other shortcomings, e.g.; you lose
|
these as axioms. This approach, however, has other shortcomings, e.g.; you lose
|
||||||
\nomen{canonicity} (\TODO{Pageno!} \cite{huber-2016}). Canonicity means that any
|
\nomen{canonicity} (\TODO{Pageno!} \cite{huber-2016}). Canonicity means that any
|
||||||
well-typed term evaluates to a \emph{canonical} form. For example for a closed
|
well-typed term evaluates to a \emph{canonical} form. For example for a closed
|
||||||
term $e : \bN$ it will be the case that $e$ reduces to $n$ applications of
|
term $e \tp \bN$ it will be the case that $e$ reduces to $n$ applications of
|
||||||
$\mathit{suc}$ to $0$ for some $n$; $e = \mathit{suc}^n\ 0$. Without canonicity
|
$\mathit{suc}$ to $0$ for some $n$; $e = \mathit{suc}^n\ 0$. Without canonicity
|
||||||
terms in the language can get ``stuck'' -- meaning that they do not reduce to a
|
terms in the language can get ``stuck'' -- meaning that they do not reduce to a
|
||||||
canonical form.
|
canonical form.
|
||||||
|
@ -195,7 +195,7 @@ Name & Agda & Notation \\
|
||||||
\nomen{Type} & \texttt{Set} & $\Type$ \\
|
\nomen{Type} & \texttt{Set} & $\Type$ \\
|
||||||
\nomen{Set} & \texttt{Σ Set IsSet} & $\Set$ \\
|
\nomen{Set} & \texttt{Σ Set IsSet} & $\Set$ \\
|
||||||
Function, morphism, map & \texttt{A → B} & $A → B$ \\
|
Function, morphism, map & \texttt{A → B} & $A → B$ \\
|
||||||
Dependent- ditto & \texttt{(a : A) → B} & $∏_{a \tp A} B$ \\
|
Dependent- ditto & \texttt{(a \tp A) → B} & $∏_{a \tp A} B$ \\
|
||||||
\nomen{Arrow} & \texttt{Arrow A B} & $\Arrow\ A\ B$ \\
|
\nomen{Arrow} & \texttt{Arrow A B} & $\Arrow\ A\ B$ \\
|
||||||
\nomen{Object} & \texttt{C.Object} & $̱ℂ.Object$ \\
|
\nomen{Object} & \texttt{C.Object} & $̱ℂ.Object$ \\
|
||||||
Definition & \texttt{=} & $̱\defeq$ \\
|
Definition & \texttt{=} & $̱\defeq$ \\
|
||||||
|
|
Loading…
Reference in a new issue