Proove identity laws for natural transformations
This commit is contained in:
parent
a64e2484e3
commit
73ab4d1836
|
@ -142,10 +142,21 @@ module _ {ℓc ℓc' ℓd ℓd' : Level} {ℂ : Category ℓc ℓc'} {𝔻 : Cat
|
|||
open IsCategory (isCategory 𝔻)
|
||||
|
||||
module _ {A B : Functor ℂ 𝔻} {f : NaturalTransformation A B} where
|
||||
private
|
||||
allNatural = naturalIsProp {F = A} {B}
|
||||
f' = proj₁ f
|
||||
module 𝔻Data = Category 𝔻
|
||||
eq-r : ∀ C → (𝔻 [ f' C ∘ identityTrans A C ]) ≡ f' C
|
||||
eq-r C = begin
|
||||
𝔻 [ f' C ∘ identityTrans A C ] ≡⟨⟩
|
||||
𝔻 [ f' C ∘ 𝔻Data.𝟙 ] ≡⟨ proj₁ (𝔻.ident {A} {B}) ⟩
|
||||
f' C ∎
|
||||
eq-l : ∀ C → (𝔻 [ identityTrans B C ∘ f' C ]) ≡ f' C
|
||||
eq-l C = proj₂ (𝔻.ident {A} {B})
|
||||
ident-r : (_:⊕:_ {A} {A} {B} f (identityNat A)) ≡ f
|
||||
ident-r = {!!}
|
||||
ident-r = lemSig allNatural _ _ (funExt eq-r)
|
||||
ident-l : (_:⊕:_ {A} {B} {B} (identityNat B) f) ≡ f
|
||||
ident-l = {!!}
|
||||
ident-l = lemSig allNatural _ _ (funExt eq-l)
|
||||
:ident:
|
||||
: (_:⊕:_ {A} {A} {B} f (identityNat A)) ≡ f
|
||||
× (_:⊕:_ {A} {B} {B} (identityNat B) f) ≡ f
|
||||
|
|
Loading…
Reference in a new issue