Show that objects are groupoids
This commit is contained in:
parent
5afa835787
commit
7b45b5cdc3
|
@ -496,6 +496,20 @@ module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
|||
res : Xi ≡ Yi
|
||||
res = lemSig propIsInitial _ _ (isoToId iso)
|
||||
|
||||
groupoidObject : isGrpd Object
|
||||
groupoidObject A B = res
|
||||
where
|
||||
open import Data.Nat using (_≤_ ; z≤n ; s≤s)
|
||||
setIso : ∀ x → isSet (Isomorphism x)
|
||||
setIso x = ntypeCommulative ((s≤s {n = 1} z≤n)) (propIsomorphism x)
|
||||
step : isSet (A ≅ B)
|
||||
step = setSig {sA = arrowsAreSets} {sB = setIso}
|
||||
res : isSet (A ≡ B)
|
||||
res = equivPreservesNType
|
||||
{A = A ≅ B} {B = A ≡ B} {n = ⟨0⟩}
|
||||
(Equivalence.symmetry (univalent≃ {A = A} {B}))
|
||||
step
|
||||
|
||||
module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
||||
open RawCategory ℂ
|
||||
open Univalence
|
||||
|
|
|
@ -216,8 +216,14 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb}
|
|||
)
|
||||
step1
|
||||
= symIso
|
||||
(isoSigFst {A = (X ℂ.≅ Y)} {B = (X ≡ Y)} {!!} {Q = \ p → (PathP (λ i → ℂ.Arrow (p i) A) xa ya) × (PathP (λ i → ℂ.Arrow (p i) B) xb yb)} ℂ.isoToId
|
||||
(symIso (_ , ℂ.asTypeIso {X} {Y}) .snd))
|
||||
(isoSigFst
|
||||
{A = (X ℂ.≅ Y)}
|
||||
{B = (X ≡ Y)}
|
||||
(ℂ.groupoidObject _ _)
|
||||
{Q = \ p → (PathP (λ i → ℂ.Arrow (p i) A) xa ya) × (PathP (λ i → ℂ.Arrow (p i) B) xb yb)}
|
||||
ℂ.isoToId
|
||||
(symIso (_ , ℂ.asTypeIso {X} {Y}) .snd)
|
||||
)
|
||||
|
||||
step2
|
||||
: Σ (X ℂ.≅ Y) (λ iso
|
||||
|
|
|
@ -21,7 +21,7 @@ open import Cubical.GradLemma
|
|||
using (gradLemma)
|
||||
public
|
||||
open import Cubical.NType
|
||||
using (⟨-2⟩ ; ⟨-1⟩ ; ⟨0⟩ ; TLevel ; HasLevel)
|
||||
using (⟨-2⟩ ; ⟨-1⟩ ; ⟨0⟩ ; TLevel ; HasLevel ; isGrpd)
|
||||
public
|
||||
open import Cubical.NType.Properties
|
||||
using
|
||||
|
@ -96,3 +96,5 @@ module _ {ℓ : Level} {A : Set ℓ} {a : A} where
|
|||
pathJ (λ y x → A) _ A refl ≡⟨ pathJprop {x = a} (λ y x → A) _ ⟩
|
||||
_ ≡⟨ pathJprop {x = a} (λ y x → A) _ ⟩
|
||||
a ∎
|
||||
|
||||
open import Cat.Wishlist public
|
||||
|
|
|
@ -9,31 +9,32 @@ open import Agda.Builtin.Sigma
|
|||
|
||||
open import Cubical.NType.Properties
|
||||
|
||||
step : ∀ {ℓ} {A : Set ℓ} → isContr A → (x y : A) → isContr (x ≡ y)
|
||||
step (a , contr) x y = {!p , c!}
|
||||
-- where
|
||||
-- p : x ≡ y
|
||||
-- p = begin
|
||||
-- x ≡⟨ sym (contr x) ⟩
|
||||
-- a ≡⟨ contr y ⟩
|
||||
-- y ∎
|
||||
-- c : (q : x ≡ y) → p ≡ q
|
||||
-- c q i j = contr (p {!!}) {!!}
|
||||
private
|
||||
step : ∀ {ℓ} {A : Set ℓ} → isContr A → (x y : A) → isContr (x ≡ y)
|
||||
step (a , contr) x y = {!p , c!}
|
||||
-- where
|
||||
-- p : x ≡ y
|
||||
-- p = begin
|
||||
-- x ≡⟨ sym (contr x) ⟩
|
||||
-- a ≡⟨ contr y ⟩
|
||||
-- y ∎
|
||||
-- c : (q : x ≡ y) → p ≡ q
|
||||
-- c q i j = contr (p {!!}) {!!}
|
||||
|
||||
-- Contractible types have any given homotopy level.
|
||||
contrInitial : {ℓ : Level} {A : Set ℓ} → ∀ n → isContr A → HasLevel n A
|
||||
contrInitial ⟨-2⟩ contr = contr
|
||||
-- lem' (S ⟨-2⟩) (a , contr) = {!step!}
|
||||
contrInitial (S ⟨-2⟩) (a , contr) x y = begin
|
||||
x ≡⟨ sym (contr x) ⟩
|
||||
a ≡⟨ contr y ⟩
|
||||
y ∎
|
||||
contrInitial (S (S n)) contr x y = {!lvl!} -- Why is this not well-founded?
|
||||
where
|
||||
c : isContr (x ≡ y)
|
||||
c = step contr x y
|
||||
lvl : HasLevel (S n) (x ≡ y)
|
||||
lvl = contrInitial {A = x ≡ y} (S n) c
|
||||
-- Contractible types have any given homotopy level.
|
||||
contrInitial : {ℓ : Level} {A : Set ℓ} → ∀ n → isContr A → HasLevel n A
|
||||
contrInitial ⟨-2⟩ contr = contr
|
||||
-- lem' (S ⟨-2⟩) (a , contr) = {!step!}
|
||||
contrInitial (S ⟨-2⟩) (a , contr) x y = begin
|
||||
x ≡⟨ sym (contr x) ⟩
|
||||
a ≡⟨ contr y ⟩
|
||||
y ∎
|
||||
contrInitial (S (S n)) contr x y = {!lvl!} -- Why is this not well-founded?
|
||||
where
|
||||
c : isContr (x ≡ y)
|
||||
c = step contr x y
|
||||
lvl : HasLevel (S n) (x ≡ y)
|
||||
lvl = contrInitial {A = x ≡ y} (S n) c
|
||||
|
||||
module _ {ℓ : Level} {A : Set ℓ} where
|
||||
ntypeCommulative : ∀ {n m} → n ≤ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A
|
||||
|
|
Loading…
Reference in a new issue