Clean-up names a bit

This commit is contained in:
Frederik Hanghøj Iversen 2018-04-13 15:35:56 +02:00
parent b7c0fe64cf
commit 98b90f2370
3 changed files with 16 additions and 18 deletions

View file

@ -129,7 +129,7 @@ module _ ( : Level) where
univ≃ = step2 univalence step0 univ≃ = step2 univalence step0
univalent : Univalent univalent : Univalent
univalent = from[Andrea] (λ _ _ univ≃) univalent = univalenceFrom≃ univ≃
SetsIsCategory : IsCategory SetsRaw SetsIsCategory : IsCategory SetsRaw
IsCategory.isPreCategory SetsIsCategory = isPreCat IsCategory.isPreCategory SetsIsCategory = isPreCat

View file

@ -130,25 +130,23 @@ record RawCategory (a b : Level) : Set (lsuc (a ⊔ b)) where
-- A perhaps more readable version of univalence: -- A perhaps more readable version of univalence:
Univalent≃ = {A B : Object} (A B) (A B) Univalent≃ = {A B : Object} (A B) (A B)
private
-- | Equivalent formulation of univalence. -- | Equivalent formulation of univalence.
Univalent[Contr] : Set _ Univalent[Contr] : Set _
Univalent[Contr] = A isContr (Σ[ X Object ] A X) Univalent[Contr] = A isContr (Σ[ X Object ] A X)
Univalent[Andrea] : Set _
Univalent[Andrea] = A B (A B) (A B)
-- From: Thierry Coquand <Thierry.Coquand@cse.gu.se> -- From: Thierry Coquand <Thierry.Coquand@cse.gu.se>
-- Date: Wed, Mar 21, 2018 at 3:12 PM -- Date: Wed, Mar 21, 2018 at 3:12 PM
-- --
-- This is not so straight-forward so you can assume it -- This is not so straight-forward so you can assume it
postulate from[Contr] : Univalent[Contr] Univalent postulate from[Contr] : Univalent[Contr] Univalent
from[Andrea] : Univalent[Andrea] Univalent univalenceFrom≃ : Univalent≃ Univalent
from[Andrea] = from[Contr] step univalenceFrom≃ = from[Contr] step
where where
module _ (f : Univalent[Andrea]) (A : Object) where module _ (f : Univalent) (A : Object) where
lem : Σ Object (A ≡_) Σ Object (A ≅_) lem : Σ Object (A ≡_) Σ Object (A ≅_)
lem = equivSig (f A) lem = equivSig λ _ f
aux : isContr (Σ Object (A ≡_)) aux : isContr (Σ Object (A ≡_))
aux = (A , refl) , (λ y contrSingl (snd y)) aux = (A , refl) , (λ y contrSingl (snd y))

View file

@ -171,7 +171,7 @@ module Try0 {a b : Level} { : Category a b}
open IsPreCategory isPreCat open IsPreCategory isPreCat
module _ (𝕏 𝕐 : Object) where module _ {𝕏 𝕐 : Object} where
open Σ 𝕏 renaming (fst to X ; snd to x) open Σ 𝕏 renaming (fst to X ; snd to x)
open Σ x renaming (fst to xa ; snd to xb) open Σ x renaming (fst to xa ; snd to xb)
open Σ 𝕐 renaming (fst to Y ; snd to y) open Σ 𝕐 renaming (fst to Y ; snd to y)
@ -286,7 +286,7 @@ module Try0 {a b : Level} { : Category a b}
equiv1 = _ , fromIso _ _ (snd iso) equiv1 = _ , fromIso _ _ (snd iso)
univalent : Univalent univalent : Univalent
univalent = from[Andrea] equiv1 univalent = univalenceFrom≃ equiv1
isCat : IsCategory raw isCat : IsCategory raw
IsCategory.isPreCategory isCat = isPreCat IsCategory.isPreCategory isCat = isPreCat