Clean-up names a bit
This commit is contained in:
parent
b7c0fe64cf
commit
98b90f2370
|
@ -129,7 +129,7 @@ module _ (ℓ : Level) where
|
||||||
univ≃ = step2 ⊙ univalence ⊙ step0
|
univ≃ = step2 ⊙ univalence ⊙ step0
|
||||||
|
|
||||||
univalent : Univalent
|
univalent : Univalent
|
||||||
univalent = from[Andrea] (λ _ _ → univ≃)
|
univalent = univalenceFrom≃ univ≃
|
||||||
|
|
||||||
SetsIsCategory : IsCategory SetsRaw
|
SetsIsCategory : IsCategory SetsRaw
|
||||||
IsCategory.isPreCategory SetsIsCategory = isPreCat
|
IsCategory.isPreCategory SetsIsCategory = isPreCat
|
||||||
|
|
|
@ -130,25 +130,23 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||||
-- A perhaps more readable version of univalence:
|
-- A perhaps more readable version of univalence:
|
||||||
Univalent≃ = {A B : Object} → (A ≡ B) ≃ (A ≅ B)
|
Univalent≃ = {A B : Object} → (A ≡ B) ≃ (A ≅ B)
|
||||||
|
|
||||||
-- | Equivalent formulation of univalence.
|
private
|
||||||
Univalent[Contr] : Set _
|
-- | Equivalent formulation of univalence.
|
||||||
Univalent[Contr] = ∀ A → isContr (Σ[ X ∈ Object ] A ≅ X)
|
Univalent[Contr] : Set _
|
||||||
|
Univalent[Contr] = ∀ A → isContr (Σ[ X ∈ Object ] A ≅ X)
|
||||||
|
|
||||||
Univalent[Andrea] : Set _
|
-- From: Thierry Coquand <Thierry.Coquand@cse.gu.se>
|
||||||
Univalent[Andrea] = ∀ A B → (A ≡ B) ≃ (A ≅ B)
|
-- Date: Wed, Mar 21, 2018 at 3:12 PM
|
||||||
|
--
|
||||||
|
-- This is not so straight-forward so you can assume it
|
||||||
|
postulate from[Contr] : Univalent[Contr] → Univalent
|
||||||
|
|
||||||
-- From: Thierry Coquand <Thierry.Coquand@cse.gu.se>
|
univalenceFrom≃ : Univalent≃ → Univalent
|
||||||
-- Date: Wed, Mar 21, 2018 at 3:12 PM
|
univalenceFrom≃ = from[Contr] ∘ step
|
||||||
--
|
|
||||||
-- This is not so straight-forward so you can assume it
|
|
||||||
postulate from[Contr] : Univalent[Contr] → Univalent
|
|
||||||
|
|
||||||
from[Andrea] : Univalent[Andrea] → Univalent
|
|
||||||
from[Andrea] = from[Contr] ∘ step
|
|
||||||
where
|
where
|
||||||
module _ (f : Univalent[Andrea]) (A : Object) where
|
module _ (f : Univalent≃) (A : Object) where
|
||||||
lem : Σ Object (A ≡_) ≃ Σ Object (A ≅_)
|
lem : Σ Object (A ≡_) ≃ Σ Object (A ≅_)
|
||||||
lem = equivSig (f A)
|
lem = equivSig λ _ → f
|
||||||
|
|
||||||
aux : isContr (Σ Object (A ≡_))
|
aux : isContr (Σ Object (A ≡_))
|
||||||
aux = (A , refl) , (λ y → contrSingl (snd y))
|
aux = (A , refl) , (λ y → contrSingl (snd y))
|
||||||
|
|
|
@ -171,7 +171,7 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb}
|
||||||
|
|
||||||
open IsPreCategory isPreCat
|
open IsPreCategory isPreCat
|
||||||
|
|
||||||
module _ (𝕏 𝕐 : Object) where
|
module _ {𝕏 𝕐 : Object} where
|
||||||
open Σ 𝕏 renaming (fst to X ; snd to x)
|
open Σ 𝕏 renaming (fst to X ; snd to x)
|
||||||
open Σ x renaming (fst to xa ; snd to xb)
|
open Σ x renaming (fst to xa ; snd to xb)
|
||||||
open Σ 𝕐 renaming (fst to Y ; snd to y)
|
open Σ 𝕐 renaming (fst to Y ; snd to y)
|
||||||
|
@ -286,7 +286,7 @@ module Try0 {ℓa ℓb : Level} {ℂ : Category ℓa ℓb}
|
||||||
equiv1 = _ , fromIso _ _ (snd iso)
|
equiv1 = _ , fromIso _ _ (snd iso)
|
||||||
|
|
||||||
univalent : Univalent
|
univalent : Univalent
|
||||||
univalent = from[Andrea] equiv1
|
univalent = univalenceFrom≃ equiv1
|
||||||
|
|
||||||
isCat : IsCategory raw
|
isCat : IsCategory raw
|
||||||
IsCategory.isPreCategory isCat = isPreCat
|
IsCategory.isPreCategory isCat = isPreCat
|
||||||
|
|
Loading…
Reference in a new issue