Add new type-synonym
This commit is contained in:
parent
a87d404aad
commit
cc1ddaac9f
|
@ -49,6 +49,9 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||||
IsIdentity id = {A B : Object} {f : Arrow A B}
|
IsIdentity id = {A B : Object} {f : Arrow A B}
|
||||||
→ f ∘ id ≡ f × id ∘ f ≡ f
|
→ f ∘ id ≡ f × id ∘ f ≡ f
|
||||||
|
|
||||||
|
ArrowsAreSets : Set (ℓa ⊔ ℓb)
|
||||||
|
ArrowsAreSets = ∀ {A B : Object} → isSet (Arrow A B)
|
||||||
|
|
||||||
IsInverseOf : ∀ {A B} → (Arrow A B) → (Arrow B A) → Set ℓb
|
IsInverseOf : ∀ {A B} → (Arrow A B) → (Arrow B A) → Set ℓb
|
||||||
IsInverseOf = λ f g → g ∘ f ≡ 𝟙 × f ∘ g ≡ 𝟙
|
IsInverseOf = λ f g → g ∘ f ≡ 𝟙 × f ∘ g ≡ 𝟙
|
||||||
|
|
||||||
|
@ -100,7 +103,7 @@ record IsCategory {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) : Set (lsuc
|
||||||
field
|
field
|
||||||
assoc : IsAssociative
|
assoc : IsAssociative
|
||||||
ident : IsIdentity 𝟙
|
ident : IsIdentity 𝟙
|
||||||
arrowIsSet : ∀ {A B : Object} → isSet (Arrow A B)
|
arrowIsSet : ArrowsAreSets
|
||||||
univalent : Univalent ident
|
univalent : Univalent ident
|
||||||
|
|
||||||
-- `IsCategory` is a mere proposition.
|
-- `IsCategory` is a mere proposition.
|
||||||
|
@ -162,8 +165,13 @@ module _ {ℓa ℓb : Level} {C : RawCategory ℓa ℓb} where
|
||||||
ident : (λ _ → IsIdentity 𝟙) [ X.ident ≡ Y.ident ]
|
ident : (λ _ → IsIdentity 𝟙) [ X.ident ≡ Y.ident ]
|
||||||
ident = propIsIdentity x X.ident Y.ident
|
ident = propIsIdentity x X.ident Y.ident
|
||||||
done : x ≡ y
|
done : x ≡ y
|
||||||
U : ∀ {a : IsIdentity 𝟙} → (λ _ → IsIdentity 𝟙) [ X.ident ≡ a ] → (b : Univalent a) → Set _
|
U : ∀ {a : IsIdentity 𝟙}
|
||||||
U eqwal bbb = (λ i → Univalent (eqwal i)) [ X.univalent ≡ bbb ]
|
→ (λ _ → IsIdentity 𝟙) [ X.ident ≡ a ]
|
||||||
|
→ (b : Univalent a)
|
||||||
|
→ Set _
|
||||||
|
U eqwal bbb =
|
||||||
|
(λ i → Univalent (eqwal i))
|
||||||
|
[ X.univalent ≡ bbb ]
|
||||||
P : (y : IsIdentity 𝟙)
|
P : (y : IsIdentity 𝟙)
|
||||||
→ (λ _ → IsIdentity 𝟙) [ X.ident ≡ y ] → Set _
|
→ (λ _ → IsIdentity 𝟙) [ X.ident ≡ y ] → Set _
|
||||||
P y eq = ∀ (b' : Univalent y) → U eq b'
|
P y eq = ∀ (b' : Univalent y) → U eq b'
|
||||||
|
|
Loading…
Reference in a new issue