isEquiv is now a record

This commit is contained in:
Andrea Vezzosi 2018-06-15 10:02:46 +02:00
parent 9ee05e1a36
commit e16a4b8189
2 changed files with 4 additions and 4 deletions

View file

@ -152,7 +152,7 @@ record RawCategory (a b : Level) : Set (lsuc (a ⊔ b)) where
univalenceFrom≅ x = univalenceFrom≃ $ fromIsomorphism _ _ x
propUnivalent : isProp Univalent
propUnivalent a b i = propPi (λ iso propIsContr) a b i
propUnivalent a b i .equiv-proof = propPi (λ iso propIsContr) (a .equiv-proof) (b .equiv-proof) i
module _ {a b : Level} ( : RawCategory a b) where
record IsPreCategory : Set (lsuc (a b)) where

View file

@ -184,7 +184,7 @@ module _ {a b : Level} (A : Set a) (B : Set b) where
private
module _ {obverse : A B} (e : isEquiv A B obverse) where
inverse : B A
inverse b = fst (fst (e b))
inverse b = fst (fst (e .equiv-proof b))
reverse : B A
reverse = inverse
@ -198,7 +198,7 @@ module _ {a b : Level} (A : Set a) (B : Set b) where
b
where
μ : (b : B) b obverse (inverse b)
μ b = snd (fst (e b))
μ b = snd (fst (e .equiv-proof b))
verso-recto : a (inverse obverse) a a
verso-recto a = begin
(inverse obverse) a ≡⟨ sym h
@ -206,7 +206,7 @@ module _ {a b : Level} (A : Set a) (B : Set b) where
a
where
c : isContr (fiber obverse (obverse a))
c = e (obverse a)
c = e .equiv-proof (obverse a)
fbr : fiber obverse (obverse a)
fbr = fst c
a' : A