isEquiv is now a record

This commit is contained in:
Andrea Vezzosi 2018-06-15 10:02:46 +02:00
parent 9ee05e1a36
commit e16a4b8189
2 changed files with 4 additions and 4 deletions

View file

@ -152,7 +152,7 @@ record RawCategory (a b : Level) : Set (lsuc (a ⊔ b)) where
univalenceFrom≅ x = univalenceFrom≃ $ fromIsomorphism _ _ x univalenceFrom≅ x = univalenceFrom≃ $ fromIsomorphism _ _ x
propUnivalent : isProp Univalent propUnivalent : isProp Univalent
propUnivalent a b i = propPi (λ iso propIsContr) a b i propUnivalent a b i .equiv-proof = propPi (λ iso propIsContr) (a .equiv-proof) (b .equiv-proof) i
module _ {a b : Level} ( : RawCategory a b) where module _ {a b : Level} ( : RawCategory a b) where
record IsPreCategory : Set (lsuc (a b)) where record IsPreCategory : Set (lsuc (a b)) where

View file

@ -184,7 +184,7 @@ module _ {a b : Level} (A : Set a) (B : Set b) where
private private
module _ {obverse : A B} (e : isEquiv A B obverse) where module _ {obverse : A B} (e : isEquiv A B obverse) where
inverse : B A inverse : B A
inverse b = fst (fst (e b)) inverse b = fst (fst (e .equiv-proof b))
reverse : B A reverse : B A
reverse = inverse reverse = inverse
@ -198,7 +198,7 @@ module _ {a b : Level} (A : Set a) (B : Set b) where
b b
where where
μ : (b : B) b obverse (inverse b) μ : (b : B) b obverse (inverse b)
μ b = snd (fst (e b)) μ b = snd (fst (e .equiv-proof b))
verso-recto : a (inverse obverse) a a verso-recto : a (inverse obverse) a a
verso-recto a = begin verso-recto a = begin
(inverse obverse) a ≡⟨ sym h (inverse obverse) a ≡⟨ sym h
@ -206,7 +206,7 @@ module _ {a b : Level} (A : Set a) (B : Set b) where
a a
where where
c : isContr (fiber obverse (obverse a)) c : isContr (fiber obverse (obverse a))
c = e (obverse a) c = e .equiv-proof (obverse a)
fbr : fiber obverse (obverse a) fbr : fiber obverse (obverse a)
fbr = fst c fbr = fst c
a' : A a' : A