isEquiv is now a record
This commit is contained in:
parent
9ee05e1a36
commit
e16a4b8189
|
@ -152,7 +152,7 @@ record RawCategory (ℓa ℓb : Level) : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||||
univalenceFrom≅ x = univalenceFrom≃ $ fromIsomorphism _ _ x
|
univalenceFrom≅ x = univalenceFrom≃ $ fromIsomorphism _ _ x
|
||||||
|
|
||||||
propUnivalent : isProp Univalent
|
propUnivalent : isProp Univalent
|
||||||
propUnivalent a b i = propPi (λ iso → propIsContr) a b i
|
propUnivalent a b i .equiv-proof = propPi (λ iso → propIsContr) (a .equiv-proof) (b .equiv-proof) i
|
||||||
|
|
||||||
module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
module _ {ℓa ℓb : Level} (ℂ : RawCategory ℓa ℓb) where
|
||||||
record IsPreCategory : Set (lsuc (ℓa ⊔ ℓb)) where
|
record IsPreCategory : Set (lsuc (ℓa ⊔ ℓb)) where
|
||||||
|
|
|
@ -184,7 +184,7 @@ module _ {ℓa ℓb : Level} (A : Set ℓa) (B : Set ℓb) where
|
||||||
private
|
private
|
||||||
module _ {obverse : A → B} (e : isEquiv A B obverse) where
|
module _ {obverse : A → B} (e : isEquiv A B obverse) where
|
||||||
inverse : B → A
|
inverse : B → A
|
||||||
inverse b = fst (fst (e b))
|
inverse b = fst (fst (e .equiv-proof b))
|
||||||
|
|
||||||
reverse : B → A
|
reverse : B → A
|
||||||
reverse = inverse
|
reverse = inverse
|
||||||
|
@ -198,7 +198,7 @@ module _ {ℓa ℓb : Level} (A : Set ℓa) (B : Set ℓb) where
|
||||||
b ∎
|
b ∎
|
||||||
where
|
where
|
||||||
μ : (b : B) → b ≡ obverse (inverse b)
|
μ : (b : B) → b ≡ obverse (inverse b)
|
||||||
μ b = snd (fst (e b))
|
μ b = snd (fst (e .equiv-proof b))
|
||||||
verso-recto : ∀ a → (inverse ∘ obverse) a ≡ a
|
verso-recto : ∀ a → (inverse ∘ obverse) a ≡ a
|
||||||
verso-recto a = begin
|
verso-recto a = begin
|
||||||
(inverse ∘ obverse) a ≡⟨ sym h ⟩
|
(inverse ∘ obverse) a ≡⟨ sym h ⟩
|
||||||
|
@ -206,7 +206,7 @@ module _ {ℓa ℓb : Level} (A : Set ℓa) (B : Set ℓb) where
|
||||||
a ∎
|
a ∎
|
||||||
where
|
where
|
||||||
c : isContr (fiber obverse (obverse a))
|
c : isContr (fiber obverse (obverse a))
|
||||||
c = e (obverse a)
|
c = e .equiv-proof (obverse a)
|
||||||
fbr : fiber obverse (obverse a)
|
fbr : fiber obverse (obverse a)
|
||||||
fbr = fst c
|
fbr = fst c
|
||||||
a' : A
|
a' : A
|
||||||
|
|
Loading…
Reference in a new issue