[WIP] Univalence for the category of hSets
This commit is contained in:
parent
f7f8953a42
commit
f69ab0ee62
|
@ -6,18 +6,22 @@ open import Agda.Primitive
|
|||
open import Data.Product
|
||||
open import Function using (_∘_)
|
||||
|
||||
open import Cubical hiding (_≃_ ; inverse)
|
||||
open import Cubical.Univalence using (univalence ; con ; _≃_)
|
||||
-- open import Cubical using (funExt ; refl ; isSet ; isProp ; _≡_ ; isEquiv ; sym ; trans ; _[_≡_] ; I ; Path ; PathP)
|
||||
open import Cubical hiding (_≃_)
|
||||
open import Cubical.Univalence using (univalence ; con ; _≃_ ; idtoeqv)
|
||||
open import Cubical.GradLemma
|
||||
|
||||
open import Cat.Category
|
||||
open import Cat.Category.Functor
|
||||
open import Cat.Category.Product
|
||||
open import Cat.Wishlist
|
||||
open import Cat.Equivalence as Eqv using (module NoEta)
|
||||
open import Cat.Equivalence as Eqv renaming (module NoEta to Eeq) using (AreInverses)
|
||||
|
||||
module Equivalence = NoEta.Equivalence′
|
||||
module Eeq = NoEta
|
||||
module Equivalence = Eeq.Equivalence′
|
||||
postulate
|
||||
_⊙_ : {ℓa ℓb ℓc : Level} {A : Set ℓa} {B : Set ℓb} {C : Set ℓc} → (A ≃ B) → (B ≃ C) → A ≃ C
|
||||
sym≃ : ∀ {ℓa ℓb} {A : Set ℓa} {B : Set ℓb} → A ≃ B → B ≃ A
|
||||
infixl 10 _⊙_
|
||||
|
||||
module _ (ℓ : Level) where
|
||||
private
|
||||
|
@ -25,7 +29,7 @@ module _ (ℓ : Level) where
|
|||
open import Cubical.Universe
|
||||
|
||||
SetsRaw : RawCategory (lsuc ℓ) ℓ
|
||||
RawCategory.Object SetsRaw = hSet
|
||||
RawCategory.Object SetsRaw = hSet {ℓ}
|
||||
RawCategory.Arrow SetsRaw (T , _) (U , _) = T → U
|
||||
RawCategory.𝟙 SetsRaw = Function.id
|
||||
RawCategory._∘_ SetsRaw = Function._∘′_
|
||||
|
@ -40,125 +44,95 @@ module _ (ℓ : Level) where
|
|||
arrowsAreSets : ArrowsAreSets
|
||||
arrowsAreSets {B = (_ , s)} = setPi λ _ → s
|
||||
|
||||
isIso = Eqv.Isomorphism
|
||||
module _ {hA hB : hSet {ℓ}} where
|
||||
open Σ hA renaming (proj₁ to A ; proj₂ to sA)
|
||||
open Σ hB renaming (proj₁ to B ; proj₂ to sB)
|
||||
lem1 : (f : A → B) → isSet A → isSet B → isProp (isIso f)
|
||||
lem1 f sA sB = res
|
||||
where
|
||||
module _ (x y : isIso f) where
|
||||
module x = Σ x renaming (proj₁ to inverse ; proj₂ to areInverses)
|
||||
module y = Σ y renaming (proj₁ to inverse ; proj₂ to areInverses)
|
||||
module xA = AreInverses x.areInverses
|
||||
module yA = AreInverses y.areInverses
|
||||
-- I had a lot of difficulty using the corresponding proof where
|
||||
-- AreInverses is defined. This is sadly a bit anti-modular. The
|
||||
-- reason for my troubles is probably related to the type of objects
|
||||
-- being hSet's rather than sets.
|
||||
p : ∀ {f} g → isProp (AreInverses {A = A} {B} f g)
|
||||
p {f} g xx yy i = record
|
||||
{ verso-recto = ve-re
|
||||
; recto-verso = re-ve
|
||||
}
|
||||
where
|
||||
module xxA = AreInverses xx
|
||||
module yyA = AreInverses yy
|
||||
ve-re : g ∘ f ≡ Function.id
|
||||
ve-re = arrowsAreSets {A = hA} {B = hA} _ _ xxA.verso-recto yyA.verso-recto i
|
||||
re-ve : f ∘ g ≡ Function.id
|
||||
re-ve = arrowsAreSets {A = hB} {B = hB} _ _ xxA.recto-verso yyA.recto-verso i
|
||||
1eq : x.inverse ≡ y.inverse
|
||||
1eq = begin
|
||||
x.inverse ≡⟨⟩
|
||||
x.inverse ∘ Function.id ≡⟨ cong (λ φ → x.inverse ∘ φ) (sym yA.recto-verso) ⟩
|
||||
x.inverse ∘ (f ∘ y.inverse) ≡⟨⟩
|
||||
(x.inverse ∘ f) ∘ y.inverse ≡⟨ cong (λ φ → φ ∘ y.inverse) xA.verso-recto ⟩
|
||||
Function.id ∘ y.inverse ≡⟨⟩
|
||||
y.inverse ∎
|
||||
2eq : (λ i → AreInverses f (1eq i)) [ x.areInverses ≡ y.areInverses ]
|
||||
2eq = lemPropF p 1eq
|
||||
res : x ≡ y
|
||||
res i = 1eq i , 2eq i
|
||||
module _ {ℓa ℓb : Level} {A : Set ℓa} {P : A → Set ℓb} where
|
||||
postulate
|
||||
lem2 : ((x : A) → isProp (P x)) → (p q : Σ A P)
|
||||
→ (p ≡ q) ≃ (proj₁ p ≡ proj₁ q)
|
||||
lem3 : {Q : A → Set ℓb} → ((x : A) → P x ≃ Q x)
|
||||
→ Σ A P ≃ Σ A Q
|
||||
|
||||
module _ {ℓa ℓb : Level} {A : Set ℓa} {B : Set ℓb} where
|
||||
postulate
|
||||
lem4 : isSet A → isSet B → (f : A → B)
|
||||
→ isEquiv A B f ≃ isIso f
|
||||
|
||||
module _ {hA hB : Object} where
|
||||
private
|
||||
A = proj₁ hA
|
||||
isSetA : isSet A
|
||||
isSetA = proj₂ hA
|
||||
sA = proj₂ hA
|
||||
B = proj₁ hB
|
||||
isSetB : isSet B
|
||||
isSetB = proj₂ hB
|
||||
sB = proj₂ hB
|
||||
|
||||
toIsomorphism : A ≃ B → hA ≅ hB
|
||||
toIsomorphism e = obverse , inverse , verso-recto , recto-verso
|
||||
postulate
|
||||
-- lem3 and the equivalence from lem4
|
||||
step0 : Σ (A → B) isIso ≃ Σ (A → B) (isEquiv A B)
|
||||
-- univalence
|
||||
step1 : Σ (A → B) (isEquiv A B) ≃ (A ≡ B)
|
||||
-- lem2 with propIsSet
|
||||
step2 : (A ≡ B) ≃ (hA ≡ hB)
|
||||
-- Go from an isomorphism on sets to an isomorphism on homotopic sets
|
||||
trivial? : (hA ≅ hB) ≃ Σ (A → B) isIso
|
||||
trivial? = sym≃ (Eeq.fromIsomorphism res)
|
||||
where
|
||||
fwd : Σ (A → B) isIso → hA ≅ hB
|
||||
fwd (f , g , inv) = f , g , inv.toPair
|
||||
where
|
||||
open Equivalence e
|
||||
|
||||
fromIsomorphism : hA ≅ hB → A ≃ B
|
||||
fromIsomorphism iso = con obverse (gradLemma obverse inverse recto-verso verso-recto)
|
||||
where
|
||||
obverse : A → B
|
||||
obverse = proj₁ iso
|
||||
inverse : B → A
|
||||
inverse = proj₁ (proj₂ iso)
|
||||
-- FIXME IsInverseOf should change name to AreInverses and the
|
||||
-- ordering should be swapped.
|
||||
areInverses : IsInverseOf {A = hA} {hB} obverse inverse
|
||||
areInverses = proj₂ (proj₂ iso)
|
||||
verso-recto : ∀ a → (inverse ∘ obverse) a ≡ a
|
||||
verso-recto a i = proj₁ areInverses i a
|
||||
recto-verso : ∀ b → (obverse Function.∘ inverse) b ≡ b
|
||||
recto-verso b i = proj₂ areInverses i b
|
||||
|
||||
private
|
||||
univIso : (A ≡ B) Eqv.≅ (A ≃ B)
|
||||
univIso = Eeq.toIsomorphism univalence
|
||||
obverse' : A ≡ B → A ≃ B
|
||||
obverse' = proj₁ univIso
|
||||
inverse' : A ≃ B → A ≡ B
|
||||
inverse' = proj₁ (proj₂ univIso)
|
||||
-- Drop proof of being a set from both sides of an equality.
|
||||
dropP : hA ≡ hB → A ≡ B
|
||||
dropP eq i = proj₁ (eq i)
|
||||
-- Add proof of being a set to both sides of a set-theoretic equivalence
|
||||
-- returning a category-theoretic equivalence.
|
||||
addE : A Eqv.≅ B → hA ≅ hB
|
||||
addE eqv = proj₁ eqv , (proj₁ (proj₂ eqv)) , asPair
|
||||
where
|
||||
areeqv = proj₂ (proj₂ eqv)
|
||||
asPair =
|
||||
let module Inv = Eqv.AreInverses areeqv
|
||||
in Inv.verso-recto , Inv.recto-verso
|
||||
|
||||
obverse : hA ≡ hB → hA ≅ hB
|
||||
obverse = addE ∘ Eeq.toIsomorphism ∘ obverse' ∘ dropP
|
||||
|
||||
-- Drop proof of being a set form both sides of a category-theoretic
|
||||
-- equivalence returning a set-theoretic equivalence.
|
||||
dropE : hA ≅ hB → A Eqv.≅ B
|
||||
dropE eqv = obv , inv , asAreInverses
|
||||
where
|
||||
obv = proj₁ eqv
|
||||
inv = proj₁ (proj₂ eqv)
|
||||
areEq = proj₂ (proj₂ eqv)
|
||||
asAreInverses : Eqv.AreInverses obv inv
|
||||
asAreInverses = record { verso-recto = proj₁ areEq ; recto-verso = proj₂ areEq }
|
||||
|
||||
isoToEquiv : A Eqv.≅ B → A ≃ B
|
||||
isoToEquiv = Eeq.fromIsomorphism
|
||||
|
||||
-- Add proof of being a set to both sides of an equality.
|
||||
addP : A ≡ B → hA ≡ hB
|
||||
addP p = lemSig (λ X → propPi λ x → propPi (λ y → propIsProp)) hA hB p
|
||||
inverse : hA ≅ hB → hA ≡ hB
|
||||
inverse = addP ∘ inverse' ∘ isoToEquiv ∘ dropE
|
||||
|
||||
-- open AreInverses (proj₂ (proj₂ univIso)) renaming
|
||||
-- ( verso-recto to verso-recto'
|
||||
-- ; recto-verso to recto-verso'
|
||||
-- )
|
||||
-- I can just open them but I wanna be able to see the type annotations.
|
||||
verso-recto' : inverse' ∘ obverse' ≡ Function.id
|
||||
verso-recto' = Eqv.AreInverses.verso-recto (proj₂ (proj₂ univIso))
|
||||
recto-verso' : obverse' ∘ inverse' ≡ Function.id
|
||||
recto-verso' = Eqv.AreInverses.recto-verso (proj₂ (proj₂ univIso))
|
||||
verso-recto : (iso : hA ≅ hB) → obverse (inverse iso) ≡ iso
|
||||
verso-recto iso = begin
|
||||
obverse (inverse iso) ≡⟨⟩
|
||||
( addE ∘ Eeq.toIsomorphism
|
||||
∘ obverse' ∘ dropP ∘ addP
|
||||
∘ inverse' ∘ isoToEquiv
|
||||
∘ dropE) iso
|
||||
≡⟨⟩
|
||||
( addE ∘ Eeq.toIsomorphism
|
||||
∘ obverse'
|
||||
∘ inverse' ∘ isoToEquiv
|
||||
∘ dropE) iso
|
||||
≡⟨ {!!} ⟩ -- obverse' inverse' are inverses
|
||||
( addE ∘ Eeq.toIsomorphism ∘ isoToEquiv ∘ dropE) iso
|
||||
≡⟨ {!!} ⟩ -- should be easy to prove
|
||||
-- _≃_.toIsomorphism ∘ isoToEquiv ≡ id
|
||||
(addE ∘ dropE) iso
|
||||
≡⟨⟩
|
||||
iso ∎
|
||||
|
||||
-- Similar to above.
|
||||
recto-verso : (eq : hA ≡ hB) → inverse (obverse eq) ≡ eq
|
||||
recto-verso eq = begin
|
||||
inverse (obverse eq) ≡⟨ {!!} ⟩
|
||||
eq ∎
|
||||
|
||||
-- Use the fact that being an h-level is a mere proposition.
|
||||
-- This is almost provable using `Wishlist.isSetIsProp` - although
|
||||
-- this creates homogenous paths.
|
||||
isSetEq : (p : A ≡ B) → (λ i → isSet (p i)) [ isSetA ≡ isSetB ]
|
||||
isSetEq = {!!}
|
||||
|
||||
res : hA ≡ hB
|
||||
proj₁ (res i) = {!!}
|
||||
proj₂ (res i) = isSetEq {!!} i
|
||||
module inv = AreInverses inv
|
||||
bwd : hA ≅ hB → Σ (A → B) isIso
|
||||
bwd (f , g , x , y) = f , g , record { verso-recto = x ; recto-verso = y }
|
||||
res : Σ (A → B) isIso Eqv.≅ (hA ≅ hB)
|
||||
res = fwd , bwd , record { verso-recto = refl ; recto-verso = refl }
|
||||
conclusion : (hA ≅ hB) ≃ (hA ≡ hB)
|
||||
conclusion = trivial? ⊙ step0 ⊙ step1 ⊙ step2
|
||||
t : (hA ≡ hB) ≃ (hA ≅ hB)
|
||||
t = sym≃ conclusion
|
||||
-- TODO Is the morphism `(_≃_.eqv conclusion)` the same as
|
||||
-- `(id-to-iso (λ {A} {B} → isIdentity {A} {B}) hA hB)` ?
|
||||
res : isEquiv (hA ≡ hB) (hA ≅ hB) (_≃_.eqv t)
|
||||
res = _≃_.isEqv t
|
||||
module _ {hA hB : hSet {ℓ}} where
|
||||
univalent : isEquiv (hA ≡ hB) (hA ≅ hB) (id-to-iso (λ {A} {B} → isIdentity {A} {B}) hA hB)
|
||||
univalent = {!gradLemma obverse inverse verso-recto recto-verso!}
|
||||
univalent = let k = _≃_.isEqv (sym≃ conclusion) in {!!}
|
||||
|
||||
SetsIsCategory : IsCategory SetsRaw
|
||||
IsCategory.isAssociative SetsIsCategory = refl
|
||||
|
|
|
@ -21,6 +21,8 @@ module _ {ℓa ℓb : Level} where
|
|||
obverse = f
|
||||
reverse = g
|
||||
inverse = reverse
|
||||
toPair : Σ _ _
|
||||
toPair = verso-recto , recto-verso
|
||||
|
||||
Isomorphism : (f : A → B) → Set _
|
||||
Isomorphism f = Σ (B → A) λ g → AreInverses f g
|
||||
|
@ -28,6 +30,21 @@ module _ {ℓa ℓb : Level} where
|
|||
_≅_ : Set ℓa → Set ℓb → Set _
|
||||
A ≅ B = Σ (A → B) Isomorphism
|
||||
|
||||
module _ {ℓ : Level} {A B : Set ℓ} {f : A → B}
|
||||
(g : B → A) (s : {A B : Set ℓ} → isSet (A → B)) where
|
||||
|
||||
propAreInverses : isProp (AreInverses {A = A} {B} f g)
|
||||
propAreInverses x y i = record
|
||||
{ verso-recto = ve-re
|
||||
; recto-verso = re-ve
|
||||
}
|
||||
where
|
||||
open AreInverses
|
||||
ve-re : g ∘ f ≡ idFun A
|
||||
ve-re = s (g ∘ f) (idFun A) (verso-recto x) (verso-recto y) i
|
||||
re-ve : f ∘ g ≡ idFun B
|
||||
re-ve = s (f ∘ g) (idFun B) (recto-verso x) (recto-verso y) i
|
||||
|
||||
-- In HoTT they generalize an equivalence to have the following 3 properties:
|
||||
module _ {ℓa ℓb ℓ : Level} (A : Set ℓa) (B : Set ℓb) where
|
||||
record Equiv (iseqv : (A → B) → Set ℓ) : Set (ℓa ⊔ ℓb ⊔ ℓ) where
|
||||
|
@ -130,54 +147,18 @@ module _ {ℓa ℓb : Level} {A : Set ℓa} {B : Set ℓb} where
|
|||
module NoEta {ℓa ℓb : Level} {A : Set ℓa} {B : Set ℓb} where
|
||||
open import Cubical.PathPrelude renaming (_≃_ to _≃η_)
|
||||
open import Cubical.Univalence using (_≃_)
|
||||
|
||||
doEta : A ≃ B → A ≃η B
|
||||
doEta (_≃_.con eqv isEqv) = eqv , isEqv
|
||||
|
||||
deEta : A ≃η B → A ≃ B
|
||||
deEta (eqv , isEqv) = _≃_.con eqv isEqv
|
||||
|
||||
module Equivalence′ (e : A ≃ B) where
|
||||
private
|
||||
doEta : A ≃ B → A ≃η B
|
||||
doEta = {!!}
|
||||
|
||||
deEta : A ≃η B → A ≃ B
|
||||
deEta = {!!}
|
||||
|
||||
e′ = doEta e
|
||||
|
||||
module E = Equivalence e′
|
||||
open E hiding (toIsomorphism ; fromIsomorphism ; _~_) public
|
||||
open Equivalence (doEta e) hiding (toIsomorphism ; fromIsomorphism ; _~_) public
|
||||
|
||||
fromIsomorphism : A ≅ B → A ≃ B
|
||||
fromIsomorphism (f , iso) = _≃_.con f (Equiv≃.fromIso _ _ iso)
|
||||
|
||||
toIsomorphism : A ≃ B → A ≅ B
|
||||
toIsomorphism (_≃_.con f eqv) = f , Equiv≃.toIso _ _ eqv
|
||||
-- private
|
||||
-- module Equiv′ (e : A ≃ B) where
|
||||
-- open _≃_ e renaming (eqv to obverse)
|
||||
|
||||
-- private
|
||||
-- inverse : B → A
|
||||
-- inverse b = fst (fst (isEqv b))
|
||||
|
||||
-- -- We can extract an isomorphism from an equivalence.
|
||||
-- --
|
||||
-- -- One way to do it would be to use univalence and coersion - but there's
|
||||
-- -- probably a more straight-forward way that does not require breaking the
|
||||
-- -- dependency graph between this module and Cubical.Univalence
|
||||
-- areInverses : AreInverses obverse inverse
|
||||
-- areInverses = record
|
||||
-- { verso-recto = verso-recto
|
||||
-- ; recto-verso = recto-verso
|
||||
-- }
|
||||
-- where
|
||||
-- postulate
|
||||
-- verso-recto : inverse ∘ obverse ≡ idFun A
|
||||
-- recto-verso : obverse ∘ inverse ≡ idFun B
|
||||
|
||||
-- toIsomorphism : A ≅ B
|
||||
-- toIsomorphism = obverse , (inverse , areInverses)
|
||||
|
||||
-- open AreInverses areInverses
|
||||
|
||||
-- equiv≃ : Equiv A B (isEquiv A B)
|
||||
-- equiv≃ = {!!}
|
||||
|
||||
-- -- A wrapper around Univalence.≃
|
||||
-- module Equiv≃′ = Equiv {!!}
|
||||
|
|
Loading…
Reference in a new issue