Factor out a useful type-family
This commit is contained in:
parent
860c91f913
commit
ff496aae09
|
@ -143,13 +143,20 @@ module _ {ℓa} {ℓb} {ℂ : RawCategory ℓa ℓb} where
|
||||||
module IC = IsCategory
|
module IC = IsCategory
|
||||||
module X = IsCategory x
|
module X = IsCategory x
|
||||||
module Y = IsCategory y
|
module Y = IsCategory y
|
||||||
|
-- ident : X.ident {?} ≡ Y.ident
|
||||||
|
ident : (λ _ → IsIdentity 𝟙) [ X.ident ≡ Y.ident ]
|
||||||
ident = X.propIsIdentity X.ident Y.ident
|
ident = X.propIsIdentity X.ident Y.ident
|
||||||
done : x ≡ y
|
-- A version of univalence indexed by the identity proof.
|
||||||
T : I → Set (ℓa ⊔ ℓb)
|
-- Not of course that since it's defined where `RawCategory ℂ` has been opened
|
||||||
T i = {A B : Object} →
|
-- this is specialized to that category.
|
||||||
|
Univ : IsIdentity 𝟙 → Set _
|
||||||
|
Univ idnt = {A B : Y.Raw.Object} →
|
||||||
isEquiv (A ≡ B) (A ≅ B)
|
isEquiv (A ≡ B) (A ≅ B)
|
||||||
(λ eq → transp (λ i₁ → A ≅ eq i₁) (𝟙 , 𝟙 , ident i))
|
(λ eq → transp (λ j → A ≅ eq j) (𝟙 , 𝟙 , idnt))
|
||||||
eqUni : T [ X.univalent ≡ Y.univalent ]
|
done : x ≡ y
|
||||||
|
U : ∀ {a : IsIdentity 𝟙} → (λ _ → IsIdentity 𝟙) [ X.ident ≡ a ] → (b : Univ a) → Set _
|
||||||
|
U eqwal bbb = (λ i → Univ (eqwal i)) [ X.univalent ≡ bbb ]
|
||||||
|
eqUni : U ident Y.univalent
|
||||||
eqUni = {!!}
|
eqUni = {!!}
|
||||||
IC.assoc (done i) = X.propIsAssociative X.assoc Y.assoc i
|
IC.assoc (done i) = X.propIsAssociative X.assoc Y.assoc i
|
||||||
IC.ident (done i) = ident i
|
IC.ident (done i) = ident i
|
||||||
|
|
Loading…
Reference in a new issue