Frederik Hanghøj Iversen
41e2d02c8d
By Andrea The reason you cannot use cong in [1] is that §2-fromMonad result type depends on the input, you need a dependent version of cong: cong-d : ∀ {ℓ} {A : Set ℓ} {ℓ'} {B : A → Set ℓ'} {x y : A} → (f : (x : A) → B x) → (eq : x ≡ y) → PathP (\ i → B (eq i)) (f x) (f y) cong-d f p = λ i → f (p i) I attach a modified Voevodsky.agda. Notice that the definition of "t" is still highlighted in yellow, that's because it being a homogeneous path depends on the exact definition of lem, see the comment with the two definitional equality constraints. |
||
---|---|---|
.. | ||
Monad | ||
CartesianClosed.agda | ||
Exponential.agda | ||
Functor.agda | ||
Monad.agda | ||
Monoid.agda | ||
NaturalTransformation.agda | ||
Product.agda | ||
Yoneda.agda |