cat/src/Cat/Category
Frederik Hanghøj Iversen 41e2d02c8d [WIP] Prove voe §2.3
By Andrea

The reason you cannot use cong in [1] is that §2-fromMonad result type
depends on the input, you need a dependent version of cong:

cong-d : ∀ {ℓ} {A : Set ℓ} {ℓ'} {B : A → Set ℓ'} {x y : A}
               → (f : (x : A) → B x)
               → (eq : x ≡ y)
               → PathP (\ i → B (eq i)) (f x) (f y)
cong-d f p = λ i → f (p i)

I attach a modified Voevodsky.agda.

Notice that the definition of "t" is still highlighted in yellow,
that's because it being a homogeneous path depends on the exact
definition of lem, see the comment with the two definitional equality
constraints.
2018-03-14 10:30:42 +01:00
..
Monad [WIP] Prove voe §2.3 2018-03-14 10:30:42 +01:00
CartesianClosed.agda Move product, exponential, ... 2018-02-05 14:59:53 +01:00
Exponential.agda Have yoneda without having a category of categories 2018-03-05 13:52:59 +01:00
Functor.agda Rename func* and func-> to omap and fmap respectively 2018-03-08 11:03:56 +01:00
Monad.agda Move monoidal and kleisli representation to own modules 2018-03-12 14:23:23 +01:00
Monoid.agda Have yoneda without having a category of categories 2018-03-05 13:52:59 +01:00
NaturalTransformation.agda Rename func* and func-> to omap and fmap respectively 2018-03-08 11:03:56 +01:00
Product.agda Add note 2018-03-08 10:50:18 +01:00
Yoneda.agda Stuff about univalence in the category of sets 2018-03-12 13:38:48 +01:00