143 lines
5.1 KiB
Agda
143 lines
5.1 KiB
Agda
{-# OPTIONS --cubical #-}
|
||
|
||
module Cat.Category where
|
||
|
||
open import Agda.Primitive
|
||
open import Data.Unit.Base
|
||
open import Data.Product renaming (proj₁ to fst ; proj₂ to snd)
|
||
open import Data.Empty
|
||
open import Function
|
||
open import Cubical
|
||
|
||
postulate undefined : {ℓ : Level} → {A : Set ℓ} → A
|
||
|
||
record Category {ℓ ℓ'} : Set (lsuc (ℓ' ⊔ ℓ)) where
|
||
constructor category
|
||
field
|
||
Object : Set ℓ
|
||
Arrow : Object → Object → Set ℓ'
|
||
𝟙 : {o : Object} → Arrow o o
|
||
_⊕_ : { a b c : Object } → Arrow b c → Arrow a b → Arrow a c
|
||
assoc : { A B C D : Object } { f : Arrow A B } { g : Arrow B C } { h : Arrow C D }
|
||
→ h ⊕ (g ⊕ f) ≡ (h ⊕ g) ⊕ f
|
||
ident : { A B : Object } { f : Arrow A B }
|
||
→ f ⊕ 𝟙 ≡ f × 𝟙 ⊕ f ≡ f
|
||
infixl 45 _⊕_
|
||
domain : { a b : Object } → Arrow a b → Object
|
||
domain {a = a} _ = a
|
||
codomain : { a b : Object } → Arrow a b → Object
|
||
codomain {b = b} _ = b
|
||
|
||
open Category public
|
||
|
||
module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} { A B : Object ℂ } where
|
||
private
|
||
open module ℂ = Category ℂ
|
||
_+_ = ℂ._⊕_
|
||
|
||
Isomorphism : (f : ℂ.Arrow A B) → Set ℓ'
|
||
Isomorphism f = Σ[ g ∈ ℂ.Arrow B A ] g + f ≡ ℂ.𝟙 × f + g ≡ ℂ.𝟙
|
||
|
||
Epimorphism : {X : ℂ.Object } → (f : ℂ.Arrow A B) → Set ℓ'
|
||
Epimorphism {X} f = ( g₀ g₁ : ℂ.Arrow B X ) → g₀ + f ≡ g₁ + f → g₀ ≡ g₁
|
||
|
||
Monomorphism : {X : ℂ.Object} → (f : ℂ.Arrow A B) → Set ℓ'
|
||
Monomorphism {X} f = ( g₀ g₁ : ℂ.Arrow X A ) → f + g₀ ≡ f + g₁ → g₀ ≡ g₁
|
||
|
||
iso-is-epi : ∀ {X} (f : ℂ.Arrow A B) → Isomorphism f → Epimorphism {X = X} f
|
||
-- Idea: Pre-compose with f- on both sides of the equality of eq to get
|
||
-- g₀ + f + f- ≡ g₁ + f + f-
|
||
-- which by left-inv reduces to the goal.
|
||
iso-is-epi f (f- , left-inv , right-inv) g₀ g₁ eq =
|
||
trans (sym (fst ℂ.ident))
|
||
( trans (cong (_+_ g₀) (sym right-inv))
|
||
( trans ℂ.assoc
|
||
( trans (cong (λ x → x + f-) eq)
|
||
( trans (sym ℂ.assoc)
|
||
( trans (cong (_+_ g₁) right-inv) (fst ℂ.ident))
|
||
)
|
||
)
|
||
)
|
||
)
|
||
|
||
iso-is-mono : ∀ {X} (f : ℂ.Arrow A B ) → Isomorphism f → Monomorphism {X = X} f
|
||
-- For the next goal we do something similar: Post-compose with f- and use
|
||
-- right-inv to get the goal.
|
||
iso-is-mono f (f- , (left-inv , right-inv)) g₀ g₁ eq =
|
||
trans (sym (snd ℂ.ident))
|
||
( trans (cong (λ x → x + g₀) (sym left-inv))
|
||
( trans (sym ℂ.assoc)
|
||
( trans (cong (_+_ f-) eq)
|
||
( trans ℂ.assoc
|
||
( trans (cong (λ x → x + g₁) left-inv) (snd ℂ.ident)
|
||
)
|
||
)
|
||
)
|
||
)
|
||
)
|
||
|
||
iso-is-epi-mono : ∀ {X} (f : ℂ.Arrow A B ) → Isomorphism f → Epimorphism {X = X} f × Monomorphism {X = X} f
|
||
iso-is-epi-mono f iso = iso-is-epi f iso , iso-is-mono f iso
|
||
|
||
{-
|
||
epi-mono-is-not-iso : ∀ {ℓ ℓ'} → ¬ ((ℂ : Category {ℓ} {ℓ'}) {A B X : Object ℂ} (f : Arrow ℂ A B ) → Epimorphism {ℂ = ℂ} {X = X} f → Monomorphism {ℂ = ℂ} {X = X} f → Isomorphism {ℂ = ℂ} f)
|
||
epi-mono-is-not-iso f =
|
||
let k = f {!!} {!!} {!!} {!!}
|
||
in {!!}
|
||
-}
|
||
|
||
-- Isomorphism of objects
|
||
_≅_ : { ℓ ℓ' : Level } → { ℂ : Category {ℓ} {ℓ'} } → ( A B : Object ℂ ) → Set ℓ'
|
||
_≅_ {ℂ = ℂ} A B = Σ[ f ∈ ℂ.Arrow A B ] (Isomorphism {ℂ = ℂ} f)
|
||
where
|
||
open module ℂ = Category ℂ
|
||
|
||
Product : {ℓ : Level} → ( C D : Category {ℓ} {ℓ} ) → Category {ℓ} {ℓ}
|
||
Product C D =
|
||
record
|
||
{ Object = C.Object × D.Object
|
||
; Arrow = λ { (c , d) (c' , d') →
|
||
let carr = C.Arrow c c'
|
||
darr = D.Arrow d d'
|
||
in carr × darr}
|
||
; 𝟙 = C.𝟙 , D.𝟙
|
||
; _⊕_ = λ { (bc∈C , bc∈D) (ab∈C , ab∈D) → bc∈C C.⊕ ab∈C , bc∈D D.⊕ ab∈D}
|
||
; assoc = eqpair C.assoc D.assoc
|
||
; ident =
|
||
let (Cl , Cr) = C.ident
|
||
(Dl , Dr) = D.ident
|
||
in eqpair Cl Dl , eqpair Cr Dr
|
||
}
|
||
where
|
||
open module C = Category C
|
||
open module D = Category D
|
||
-- Two pairs are equal if their components are equal.
|
||
eqpair : {ℓ : Level} → { A : Set ℓ } → { B : Set ℓ } → { a a' : A } → { b b' : B } → a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b')
|
||
eqpair {a = a} {b = b} eqa eqb = subst eqa (subst eqb (refl {x = (a , b)}))
|
||
|
||
Opposite : ∀ {ℓ ℓ'} → Category {ℓ} {ℓ'} → Category {ℓ} {ℓ'}
|
||
Opposite ℂ =
|
||
record
|
||
{ Object = ℂ.Object
|
||
; Arrow = λ A B → ℂ.Arrow B A
|
||
; 𝟙 = ℂ.𝟙
|
||
; _⊕_ = λ g f → f ℂ.⊕ g
|
||
; assoc = sym ℂ.assoc
|
||
; ident = swap ℂ.ident
|
||
}
|
||
where
|
||
open module ℂ = Category ℂ
|
||
|
||
Hom : {ℓ ℓ' : Level} → (ℂ : Category {ℓ} {ℓ'}) → (A B : Object ℂ) → Set ℓ'
|
||
Hom ℂ A B = Arrow ℂ A B
|
||
|
||
module _ {ℓ ℓ' : Level} {ℂ : Category {ℓ} {ℓ'}} where
|
||
private
|
||
Obj = Object ℂ
|
||
Arr = Arrow ℂ
|
||
_+_ = _⊕_ ℂ
|
||
|
||
HomFromArrow : (A : Obj) → {B B' : Obj} → (g : Arr B B')
|
||
→ Hom ℂ A B → Hom ℂ A B'
|
||
HomFromArrow _A g = λ f → g + f
|