cat/doc/cubical.tex

417 lines
14 KiB
TeX
Raw Normal View History

2018-05-02 15:02:46 +00:00
\chapter{Cubical Agda}
\section{Propositional equality}
2018-05-15 14:08:29 +00:00
Judgmental equality in Agda is a feature of the type system. Its something that
can be checked automatically by the type checker: In the example from the
2018-05-02 15:02:46 +00:00
introduction $n + 0$ can be judged to be equal to $n$ simply by expanding the
definition of $+$.
2018-05-09 16:13:36 +00:00
On the other hand, propositional equality is something defined within the
language itself. Propositional equality cannot be derived automatically. The
2018-05-15 14:08:29 +00:00
normal definition of judgmental equality is an inductive data type. Cubical Agda
2018-05-09 16:13:36 +00:00
discards this type in favor of a new primitives that has certain computational
properties exclusive to it.
2018-05-02 15:02:46 +00:00
2018-05-18 11:14:41 +00:00
The source code can be browsed online and is linked in the beginning
of \S\ref{ch:implementation}.
2018-05-08 14:22:51 +00:00
2018-05-02 15:02:46 +00:00
\subsection{The equality type}
The usual notion of judgmental equality says that given a type $A \tp \MCU$ and
two points of $A$; $a_0, a_1 \tp A$ we can form the type:
%
\begin{align}
a_0 \equiv a_1 \tp \MCU
\end{align}
%
2018-05-15 14:08:29 +00:00
In Agda this is defined as an inductive data type with the single constructor
2018-05-09 16:13:36 +00:00
for any $a \tp A$:
2018-05-02 15:02:46 +00:00
%
\begin{align}
\refl \tp a \equiv a
\end{align}
%
2018-05-09 16:13:36 +00:00
There also exist a related notion of \emph{heterogeneous} equality which allows
2018-05-02 15:02:46 +00:00
for equating points of different types. In this case given two types $A, B \tp
\MCU$ and two points $a \tp A$, $b \tp B$ we can construct the type:
%
\begin{align}
a \cong b \tp \MCU
\end{align}
%
2018-05-15 14:08:29 +00:00
This is likewise defined as an inductive data type with a single constructors
2018-05-09 16:13:36 +00:00
for any $a \tp A$:
2018-05-02 15:02:46 +00:00
%
\begin{align}
\refl \tp a \cong a
\end{align}
%
In Cubical Agda these two notions are paralleled with homogeneous- and
heterogeneous paths respectively.
%
\subsection{The path type}
2018-05-09 16:13:36 +00:00
Judgmental equality in Cubical Agda is encapsulated with the type:
2018-05-02 15:02:46 +00:00
%
2018-05-09 16:13:36 +00:00
\begin{equation}
\Path \tp (P \tp I → \MCU) → P\ 0 → P\ 1 → \MCU
2018-05-09 16:13:36 +00:00
\end{equation}
2018-05-02 15:02:46 +00:00
%
$I$ is a special data type called the index set. $I$ can be thought of
simply as the interval on the real numbers from $0$ to $1$. $P$ is a
family of types over the index set $I$. I will sometimes refer to $P$
as the \nomenindex{path space} of some path $p \tp \Path\ P\ a\ b$. By
this token $P\ 0$ then corresponds to the type at the left-endpoint
and $P\ 1$ as the type at the right-endpoint. The type is called
$\Path$ because it is connected with paths in homotopy theory. The
intuition behind this is that $\Path$ describes paths in $\MCU$ --
i.e.\ between types. For a path $p$ for the point $p\ i$ the index $i$
describes how far along the path one has moved. An inhabitant of
$\Path\ P\ a_0\ a_1$ is a (dependent-) function, $p$, from the
index-space to the path space:
2018-05-02 15:02:46 +00:00
%
$$
2018-05-09 16:13:36 +00:00
p \tp \prod_{i \tp I} P\ i
2018-05-02 15:02:46 +00:00
$$
%
Which must satisfy being judgmentally equal to $a_0$ (respectively $a_1$) at the
endpoints. I.e.:
%
\begin{align*}
p\ 0 & = a_0 \\
p\ 1 & = a_1
2018-05-07 08:53:22 +00:00
\end{align*}
2018-05-02 15:02:46 +00:00
%
2018-05-15 14:08:29 +00:00
The notion of \nomenindex{homogeneous equalities} is recovered when $P$ does not
depend on its argument. That is for $A \tp \MCU$, $a_0, a_1 \tp A$ the
homogenous equality between $a_0$ and $a_1$ is the type:
2018-05-02 15:02:46 +00:00
%
$$
a_0 \equiv a_1 \defeq \Path\ (\lambda i \to A)\ a_0\ a_1
$$
%
2018-05-15 14:08:29 +00:00
I will generally prefer to use the notation
2018-05-09 16:13:36 +00:00
$a \equiv b$ when talking about non-dependent paths and use the notation
2018-05-15 14:08:29 +00:00
$\Path\ (\lambda i \to P\ i)\ a\ b$ when the path space is of particular
2018-05-02 15:02:46 +00:00
interest.
With this definition we can also recover reflexivity. That is, for any $A \tp
\MCU$ and $a \tp A$:
%
2018-05-08 00:00:23 +00:00
\begin{equation}
\begin{aligned}
2018-05-02 15:02:46 +00:00
\refl & \tp \Path (\lambda i \to A)\ a\ a \\
\refl & \defeq \lambda i \to a
2018-05-08 00:00:23 +00:00
\end{aligned}
\end{equation}
2018-05-02 15:02:46 +00:00
%
2018-05-15 14:08:29 +00:00
Here the path space is $P \defeq \lambda i \to A$ and it satsifies $P\ i = A$
2018-05-09 16:13:36 +00:00
definitionally. So to inhabit it, is to give a path $I \to A$ which is
judgmentally $a$ at either endpoint. This is satisfied by the constant path;
2018-05-16 09:01:07 +00:00
i.e.\ the path that stays at $a$ at any index $i$.
2018-05-02 15:02:46 +00:00
2018-05-09 16:34:05 +00:00
It is also surpisingly easy to show functional extensionality with which we can
2018-05-10 13:28:33 +00:00
construct a path between $f$ and $g$ -- the functions defined in the
introduction (section \S\ref{sec:functional-extensionality}). Functional
extensionality is the proposition, given a type $A \tp \MCU$, a family of types
$B \tp A \to \MCU$ and functions $f, g \tp \prod_{a \tp A} B\ a$:
2018-05-09 16:13:36 +00:00
%
\begin{equation}
\label{eq:funExt}
2018-05-09 16:24:07 +00:00
\funExt \tp \prod_{a \tp A} f\ a \equiv g\ a \to f \equiv g
2018-05-09 16:13:36 +00:00
\end{equation}
2018-05-02 15:02:46 +00:00
%
2018-05-09 16:13:36 +00:00
%% p = λ i a → p a i
So given $p \tp \prod_{a \tp A} f\ a \equiv g\ a$ we must give a path $f \equiv
g$. That is a function $I \to \prod_{a \tp A} B\ a$. So let $i \tp I$ be given.
We must now give an expression $\phi \tp \prod_{a \tp A} B\ a$ satisfying
$\phi\ 0 \equiv f\ a$ and $\phi\ 1 \equiv g\ a$. This neccesitates that the
expression must be a lambda-abstraction, so let $a \tp A$ be given. Now we can
apply $a$ to $p$ and get the path $p\ a \tp f\ a \equiv g\ a$. And this exactly
satisfied the conditions for $\phi$. In conclustion \ref{eq:funExt} is inhabited
by the term:
%
\begin{equation}
\label{eq:funExt}
2018-05-09 16:24:07 +00:00
\funExt\ p \defeq λ i\ a → p\ a\ i
2018-05-09 16:13:36 +00:00
\end{equation}
%
With this we can now prove the desired equality $f \equiv g$ from section
\S\ref{sec:functional-extensionality}:
%
\begin{align*}
p & \tp f \equiv g \\
2018-05-18 11:14:41 +00:00
p & \defeq \funExt\ \phi
2018-05-09 16:13:36 +00:00
\end{align*}
%
2018-05-18 11:14:41 +00:00
Here $\phi \tp \prod_{n \tp \bN} \var{zeroLeft}\ n \equiv
\var{zeroRight} n$. Paths have some other important properties, but
they are not the focus of this thesis. \TODO{Refer the reader
somewhere for more info.}
2018-05-15 14:08:29 +00:00
%
2018-05-02 15:02:46 +00:00
\section{Homotopy levels}
In ITT all equality proofs are identical (in a closed context). This means that,
in some sense, any two inhabitants of $a \equiv b$ are ``equally good'' -- they
2018-05-09 16:47:12 +00:00
do not have any interesting structure. This is referred to as Uniqueness of
2018-05-15 14:08:29 +00:00
Identity Proofs (UIP). Unfortunately it is not possible to have a type theory
2018-05-09 16:13:36 +00:00
with both univalence and UIP. In stead we have a hierarchy of types with an
increasing amount of homotopic structure. At the bottom of this hierarchy we
have the set of contractible types:
2018-05-02 15:02:46 +00:00
%
\begin{equation}
2018-05-08 00:00:23 +00:00
\begin{aligned}
%% \begin{split}
2018-05-09 16:13:36 +00:00
& \isContr && \tp \MCU \to \MCU \\
2018-05-02 15:02:46 +00:00
& \isContr\ A && \defeq \sum_{c \tp A} \prod_{a \tp A} a \equiv c
2018-05-08 00:00:23 +00:00
%% \end{split}
\end{aligned}
2018-05-02 15:02:46 +00:00
\end{equation}
%
The first component of $\isContr\ A$ is called ``the center of contraction''.
2018-05-15 14:08:29 +00:00
Under the propositions-as-types interpretation of type theory $\isContr\ A$ can
2018-05-09 16:13:36 +00:00
be thought of as ``the true proposition $A$''. And indeed $\top$ is
contractible:
\begin{equation*}
\var{tt} , \lambda x \to \refl \tp \isContr\ \top
\end{equation*}
%
It is a theorem that if a type is contractible, then it is isomorphic to the
unit-type.
2018-05-02 15:02:46 +00:00
The next step in the hierarchy is the set of mere propositions:
%
\begin{equation}
2018-05-08 00:00:23 +00:00
\begin{aligned}
2018-05-02 15:02:46 +00:00
& \isProp && \tp \MCU \to \MCU \\
& \isProp\ A && \defeq \prod_{a_0, a_1 \tp A} a_0 \equiv a_1
2018-05-08 00:00:23 +00:00
\end{aligned}
2018-05-02 15:02:46 +00:00
\end{equation}
%
2018-05-15 14:08:29 +00:00
One can think of $\isProp\ A$ as the set of true and false propositions. And
2018-05-09 16:13:36 +00:00
indeed both $\top$ and $\bot$ are propositions:
%
\begin{align*}
λ \var{tt}\ \var{tt} → refl & \tp \isProp\ \\
λ\varnothing\ \varnothing & \tp \isProp\
\end{align*}
%
2018-05-15 14:08:29 +00:00
The term $\varnothing$ is used here to denote an impossible pattern. It is a
theorem that if a mere proposition $A$ is inhabited, then so is it contractible.
If it is not inhabited it is equivalent to the empty-type (or false
proposition).\TODO{Cite}
2018-05-02 15:02:46 +00:00
I will refer to a type $A \tp \MCU$ as a \emph{mere} proposition if I want to
stress that we have $\isProp\ A$.
Then comes the set of homotopical sets:
%
\begin{equation}
2018-05-08 00:00:23 +00:00
\begin{aligned}
2018-05-02 15:02:46 +00:00
& \isSet && \tp \MCU \to \MCU \\
& \isSet\ A && \defeq \prod_{a_0, a_1 \tp A} \isProp\ (a_0 \equiv a_1)
2018-05-08 00:00:23 +00:00
\end{aligned}
2018-05-02 15:02:46 +00:00
\end{equation}
%
2018-05-09 16:47:12 +00:00
I will not give an example of a set at this point. It turns out that proving
2018-05-16 09:01:07 +00:00
e.g.\ $\isProp\ \bN$ is not so straight-forward (see \cite[\S3.1.4]{hott-2013}).
2018-05-09 16:13:36 +00:00
There will be examples of sets later in this report. At this point it should be
noted that the term ``set'' is somewhat conflated; there is the notion of sets
from set-theory, in Agda types are denoted \texttt{Set}. I will use it
2018-05-09 16:47:12 +00:00
consistently to refer to a type $A$ as a set exactly if $\isSet\ A$ is a
proposition.
2018-05-02 15:02:46 +00:00
2018-05-09 16:47:12 +00:00
As the reader may have guessed the next step in the hierarchy is the type:
2018-05-02 15:02:46 +00:00
%
\begin{equation}
2018-05-08 00:00:23 +00:00
\begin{aligned}
2018-05-02 15:02:46 +00:00
& \isGroupoid && \tp \MCU \to \MCU \\
& \isGroupoid\ A && \defeq \prod_{a_0, a_1 \tp A} \isSet\ (a_0 \equiv a_1)
2018-05-08 00:00:23 +00:00
\end{aligned}
2018-05-02 15:02:46 +00:00
\end{equation}
%
And so it continues. In fact we can generalize this family of types by indexing
them with a natural number. For historical reasons, though, the bottom of the
2018-05-15 14:08:29 +00:00
hierarchy, the contractible types, is said to be a \nomen{-2-type}{homotopy
levels}, propositions are \nomen{-1-types}{homotopy levels}, (homotopical)
sets are \nomen{0-types}{homotopy levels} and so on\ldots
2018-05-02 15:02:46 +00:00
Just as with paths, homotopical sets are not at the center of focus for this
thesis. But I mention here some properties that will be relevant for this
exposition:
Proposition: Homotopy levels are cumulative. That is, if $A \tp \MCU$ has
homotopy level $n$ then so does it have $n + 1$.
Let $\left\Vert A \right\Vert = n$ denote that the level of $A$ is $n$.
Proposition: For any homotopic level $n$ this is a mere proposition.
%
\section{A few lemmas}
Rather than getting into the nitty-gritty details of Agda I venture to
take a more ``combinator-based'' approach. That is, I will use
theorems about paths already that have already been formalized.
Specifically the results come from the Agda library \texttt{cubical}
(\cite{cubical-demo}). I have used a handful of results from this
library as well as contributed a few lemmas myself.\footnote{The
module \texttt{Cat.Prelude} lists the upstream dependencies. As well
my contribution to \texttt{cubical} can be found in the git logs
which are available at
\hrefsymb{https://github.com/Saizan/cubical-demo}{\texttt{https://github.com/Saizan/cubical-demo}}.}
2018-05-02 15:02:46 +00:00
2018-05-07 22:25:34 +00:00
These theorems are all purely related to homotopy theory and cubical Agda and as
2018-05-02 15:02:46 +00:00
such not specific to the formalization of Category Theory. I will present a few
of these theorems here, as they will be used later in chapter
\ref{ch:implementation} throughout.
\subsection{Path induction}
2018-05-03 12:18:51 +00:00
\label{sec:pathJ}
2018-05-02 15:02:46 +00:00
The induction principle for paths intuitively gives us a way to reason about a
2018-05-15 14:08:29 +00:00
type family indexed by a path by only considering if said path is $\refl$ (the
\nomen{base case}{path induction}). For \emph{based path induction}, that equality is \emph{based}
2018-05-02 15:02:46 +00:00
at some element $a \tp A$.
Let a type $A \tp \MCU$ and an element of the type $a \tp A$ be given. $a$ is said to be the base of the induction. Given a family of types:
%
$$
2018-05-10 13:28:33 +00:00
D \tp \prod_{b \tp A} \prod_{p \tp a ≡ b} \MCU
2018-05-02 15:02:46 +00:00
$$
%
2018-05-10 13:28:33 +00:00
And an inhabitant of $D$ at $\refl$:
2018-05-02 15:02:46 +00:00
%
$$
2018-05-10 13:28:33 +00:00
d \tp D\ a\ \refl
2018-05-02 15:02:46 +00:00
$$
%
We have the function:
%
2018-05-09 16:13:36 +00:00
\begin{equation}
2018-05-18 11:14:41 +00:00
\pathJ\ D\ d \tp \prod_{b \tp A} \prod_{p \tp a ≡ b} D\ b\ p
2018-05-09 16:13:36 +00:00
\end{equation}
2018-05-02 15:02:46 +00:00
%
2018-05-10 13:28:33 +00:00
A simple application of $\pathJ$ is for proving that $\var{sym}$ is an
involution. Namely for any set $A \tp \MCU$, points $a, b \tp A$ and a path
between them $p \tp a \equiv b$:
%
\begin{equation}
\label{eq:sym-invol}
\var{sym}\ (\var{sym}\ p) ≡ p
\end{equation}
%
The proof will be by induction on $p$ and will be based at $a$. That is, $D$
will be the family:
%
\begin{align*}
2018-05-11 11:07:47 +00:00
D & \tp \prod_{b' \tp A} \prod_{p \tp a ≡ b'} \MCU \\
2018-05-10 13:28:33 +00:00
D\ b'\ p' & \defeq \var{sym}\ (\var{sym}\ p') ≡ p'
\end{align*}
%
2018-05-15 14:08:29 +00:00
The base case will then be:
2018-05-10 13:28:33 +00:00
%
\begin{align*}
d & \tp \var{sym}\ (\var{sym}\ \refl) ≡ \refl \\
d & \defeq \refl
\end{align*}
%
The reason $\refl$ proves this is that $\var{sym}\ \refl = \refl$ holds
definitionally. In summary \ref{eq:sym-invol} is inhabited by the term:
%
\begin{align*}
2018-05-11 11:07:47 +00:00
\pathJ\ D\ d\ b\ p
2018-05-10 13:28:33 +00:00
\tp
\var{sym}\ (\var{sym}\ p) ≡ p
\end{align*}
%
2018-05-11 11:07:47 +00:00
Another application of $\pathJ$ is for proving associativity of $\trans$. That
is, given a type $A \tp \MCU$, elements of $A$, $a, b, c, d \tp A$ and paths
between them, $p \tp a \equiv b$, $q \tp b \equiv c$ and $r \tp c \equiv d$ we
have the following:
%
\begin{equation}
\label{eq:cum-trans}
\trans\ p\ (\trans\ q\ r) ≡ \trans\ (\trans\ p\ q)\ r
\end{equation}
%
In this case the induction will be based at $c$ (the left-endpoint of $r$) and
over the family:
%
\begin{align*}
T & \tp \prod_{d' \tp A} \prod_{r' \tp c ≡ d'} \MCU \\
T\ d'\ r' & \defeq \trans\ p\ (\trans\ q\ r') ≡ \trans\ (\trans\ p\ q)\ r'
\end{align*}
%
2018-05-15 14:08:29 +00:00
So the base case is proven with $t$ which is defined as:
2018-05-11 11:07:47 +00:00
%
\begin{align*}
\trans\ p\ (\trans\ q\ \refl) &
\trans\ p\ q \\
&
\trans\ (\trans\ p\ q)\ \refl
\end{align*}
%
Here we have used the proposition $\trans\ p\ \refl \equiv p$ without proof. In
conclusion \ref{eq:cum-trans} is inhabited by the term:
%
\begin{align*}
\pathJ\ T\ t\ d\ r
\end{align*}
%
2018-05-15 14:08:29 +00:00
We shall see another application on path induction in \ref{eq:pathJ-example}.
2018-05-09 16:13:36 +00:00
2018-05-02 15:02:46 +00:00
\subsection{Paths over propositions}
2018-05-03 12:18:51 +00:00
\label{sec:lemPropF}
2018-05-02 15:02:46 +00:00
Another very useful combinator is $\lemPropF$:
To `promote' this to a dependent path we can use another useful combinator;
$\lemPropF$. Given a type $A \tp \MCU$ and a type family on $A$; $P \tp A \to
\MCU$. Let $\var{propP} \tp \prod_{x \tp A} \isProp\ (P\ x)$ be the proof that
$P$ is a mere proposition for all elements of $A$. Furthermore say we have a
path between some two elements in $A$; $p \tp a_0 \equiv a_1$ then we can built
a heterogeneous path between any two elements of $p_0 \tp P\ a_0$ and $p_1 \tp
P\ a_1$:
%
$$
2018-05-15 14:08:29 +00:00
\lemPropF\ \var{propP}\ p \tp \Path\ (\lambda\; i \mto P\ (p\ i))\ p_0\ p_1
2018-05-02 15:02:46 +00:00
$$
%
This is quite a mouthful. So let me try to show how this is a very general and
useful result.
Often when proving equalities between elements of some dependent types
$\lemPropF$ can be used to boil this complexity down to showing that the
dependent parts of the type are mere propositions. For instance, saw we have a type:
%
$$
T \defeq \sum_{a \tp A} P\ a
2018-05-02 15:02:46 +00:00
$$
%
For some proposition $P \tp A \to \MCU$. If we want to prove $t_0 \equiv t_1$
for two elements $t_0, t_1 \tp T$ then this will be a pair of paths:
%
%
\begin{align*}
p \tp & \fst\ t_0 \equiv \fst\ t_1 \\
& \Path\ (\lambda i \to P\ (p\ i))\ \snd\ t_0 \equiv \snd\ t_1
\end{align*}
%
Here $\lemPropF$ directly allow us to prove the latter of these:
%
$$
\lemPropF\ \var{propP}\ p
\tp \Path\ (\lambda i \to P\ (p\ i))\ \snd\ t_0 \equiv \snd\ t_1
$$
%
\subsection{Functions over propositions}
2018-05-03 12:18:51 +00:00
\label{sec:propPi}
2018-05-02 15:02:46 +00:00
$\prod$-types preserve propositionality when the co-domain is always a
proposition.
%
$$
\mathit{propPi} \tp \left(\prod_{a \tp A} \isProp\ (P\ a)\right) \to \isProp\ \left(\prod_{a \tp A} P\ a\right)
$$
\subsection{Pairs over propositions}
2018-05-03 12:18:51 +00:00
\label{sec:propSig}
2018-05-02 15:02:46 +00:00
%
2018-05-09 16:34:05 +00:00
$\sum$-types preserve propositionality whenever its first component is a
proposition, and its second component is a proposition for all points of in the
2018-05-02 15:02:46 +00:00
left type.
%
$$
\mathit{propSig} \tp \isProp\ A \to \left(\prod_{a \tp A} \isProp\ (P\ a)\right) \to \isProp\ \left(\sum_{a \tp A} P\ a\right)
$$