2018-02-05 13:59:53 +00:00
|
|
|
|
module Cat.Category.Product where
|
2018-02-05 13:08:30 +00:00
|
|
|
|
|
|
|
|
|
open import Agda.Primitive
|
|
|
|
|
open import Cubical
|
2018-03-08 09:20:29 +00:00
|
|
|
|
open import Data.Product as P hiding (_×_ ; proj₁ ; proj₂)
|
2018-02-05 13:08:30 +00:00
|
|
|
|
|
2018-03-08 09:20:29 +00:00
|
|
|
|
open import Cat.Category hiding (module Propositionality)
|
2018-02-05 13:08:30 +00:00
|
|
|
|
|
2018-03-08 09:23:37 +00:00
|
|
|
|
module _ {ℓa ℓb : Level} (ℂ : Category ℓa ℓb) where
|
2018-02-05 13:08:30 +00:00
|
|
|
|
|
2018-03-08 09:23:37 +00:00
|
|
|
|
open Category ℂ
|
|
|
|
|
|
2018-03-08 09:28:05 +00:00
|
|
|
|
module _ (A B : Object) where
|
|
|
|
|
record RawProduct : Set (ℓa ⊔ ℓb) where
|
|
|
|
|
no-eta-equality
|
|
|
|
|
field
|
|
|
|
|
obj : Object
|
|
|
|
|
proj₁ : ℂ [ obj , A ]
|
|
|
|
|
proj₂ : ℂ [ obj , B ]
|
|
|
|
|
|
2018-03-08 09:38:46 +00:00
|
|
|
|
-- FIXME Not sure this is actually a proposition - so this name is
|
|
|
|
|
-- misleading.
|
2018-03-08 09:28:05 +00:00
|
|
|
|
record IsProduct (raw : RawProduct) : Set (ℓa ⊔ ℓb) where
|
|
|
|
|
open RawProduct raw public
|
|
|
|
|
field
|
2018-03-08 09:38:46 +00:00
|
|
|
|
isProduct : ∀ {X : Object} (f : ℂ [ X , A ]) (g : ℂ [ X , B ])
|
|
|
|
|
→ ∃![ f×g ] (ℂ [ proj₁ ∘ f×g ] ≡ f P.× ℂ [ proj₂ ∘ f×g ] ≡ g)
|
2018-03-08 09:28:05 +00:00
|
|
|
|
|
|
|
|
|
-- | Arrow product
|
|
|
|
|
_P[_×_] : ∀ {X} → (π₁ : ℂ [ X , A ]) (π₂ : ℂ [ X , B ])
|
|
|
|
|
→ ℂ [ X , obj ]
|
|
|
|
|
_P[_×_] π₁ π₂ = P.proj₁ (isProduct π₁ π₂)
|
|
|
|
|
|
|
|
|
|
record Product : Set (ℓa ⊔ ℓb) where
|
|
|
|
|
field
|
|
|
|
|
raw : RawProduct
|
|
|
|
|
isProduct : IsProduct raw
|
|
|
|
|
|
|
|
|
|
open IsProduct isProduct public
|
2018-03-08 09:20:29 +00:00
|
|
|
|
|
2018-03-08 09:23:37 +00:00
|
|
|
|
record HasProducts : Set (ℓa ⊔ ℓb) where
|
2018-03-08 09:20:29 +00:00
|
|
|
|
field
|
2018-03-08 09:23:37 +00:00
|
|
|
|
product : ∀ (A B : Object) → Product A B
|
2018-03-08 09:20:29 +00:00
|
|
|
|
|
2018-03-08 09:30:35 +00:00
|
|
|
|
_×_ : Object → Object → Object
|
|
|
|
|
A × B = Product.obj (product A B)
|
2018-03-08 09:20:29 +00:00
|
|
|
|
|
|
|
|
|
-- | Parallel product of arrows
|
|
|
|
|
--
|
|
|
|
|
-- The product mentioned in awodey in Def 6.1 is not the regular product of
|
|
|
|
|
-- arrows. It's a "parallel" product
|
2018-03-08 09:23:37 +00:00
|
|
|
|
module _ {A A' B B' : Object} where
|
2018-03-08 09:20:29 +00:00
|
|
|
|
open Product
|
|
|
|
|
open Product (product A B) hiding (_P[_×_]) renaming (proj₁ to fst ; proj₂ to snd)
|
|
|
|
|
_|×|_ : ℂ [ A , A' ] → ℂ [ B , B' ] → ℂ [ A × B , A' × B' ]
|
2018-03-08 09:30:35 +00:00
|
|
|
|
f |×| g = product A' B'
|
|
|
|
|
P[ ℂ [ f ∘ fst ]
|
|
|
|
|
× ℂ [ g ∘ snd ]
|
2018-03-08 09:20:29 +00:00
|
|
|
|
]
|
|
|
|
|
|
2018-03-08 09:38:46 +00:00
|
|
|
|
module Propositionality {ℓa ℓb : Level} {ℂ : Category ℓa ℓb} {A B : Category.Object ℂ} where
|
|
|
|
|
propProduct : isProp (Product ℂ A B)
|
|
|
|
|
propProduct = {!!}
|
|
|
|
|
|
|
|
|
|
propHasProducts : isProp (HasProducts ℂ)
|
|
|
|
|
propHasProducts = {!!}
|